
. .
. . . ~ .

.
. . ..

. : .. ·
. : ·. . . :

lad10 lhaeli
The biggest name in little computers"'

TRS-BD®
Madel m

Operation and
BASIC Language

Reference Manual

~:1.:fHJ..~~~~
I-· .J---;:.;,.;;.:x:_~

-·-- ...&,,i,,l__.f

~ l

I I_

CUSTOM MANUFACTURED IN THE us~ BY RADIO SHACK~ A DIVISION OF TANDY CORPORATION

The FCC Wants You to Know ...
This equipment generates and uses radio frequency energy. If not installed and used prop­
erly, that is, in strict accordance with the manufacturer's instructions, it may cause interfer­
ence to radio and television reception.

It has been type tested and found to comply with the limits for a Class B computing
device in accordance with the specifications in Subpart J of Part 15 of FCC Rules, which are
designed to provide reasonable protection against such interference in a residential instal­
lation. However, there is no guarantee that interference will not occur in a particular
installation.

If this equipment does cause interference to radio or television reception, which can be
determined by turning the equipment off and on, the user is encouraged to try to correct the
interference by one or more of the following measures:

• Reorient the receiving antenna

• Relocate the computer with respect to the receiver

• Move the computer away from the receiver

• Plug the computer into a different outlet so that computer and receiver are on different
branch circuits.

If necessary, you should consult the dealer or an experienced radio,television technician for
additional suggestions. You may find the following booklet prepared by the Federal Com­
munications Commission helpful: How to Identify and Resolve Radio-TV Interference
Problems.

This booklet is available from the US Government Printing Office, Washington, DC
20402, Stock No. 004-000-00345-4.

Warning
This equipment has been certified to comply with the limits for a Class B computing device,
pursuant to Subpart J of Part 15 of FCC Rules. Only peripherals (computer input/output
devices, terminals, printers, etc.) certified to comply with the Class B limits may be attached
to this computer. Operation with non-certified peripherals is likely to result in interference to
radio and TV reception.

TRS-BO®
Model III

Operation
and BASIC
Language
Reference

Manual

MA DIVISION OF TANDY CORPORATION
FORT WORTH, TEXAS 76102

TRS-80 Model Ill Operation and BASIC
Language Reference Manual: ©1980 Tandy
Corporation, Fort Worth, Texas 76102
U.S.A. All Rights Reserved.

Reproduction or use, without express written
permission from Tandy Corporation, of any
portion of this manual is prohibited. While
reasonable efforts have been taken in the
preparation of this manual to assure its accuracy.
Tandy Corporation assumes no liability resulting
from any errors or omissions in this manual, or
from the use of the information obtained herein.

Model III System Software: ©1980 Tandy
Corporation and Microsoft. All Rights
Reserved.

The system software in the Model III
microcomputer is retained in a read-only memory
(ROM) format. All portions of this system
software, whether in the ROM format or other
source code form format, and the ROM circuitry,
are copyrighted and are the proprietary and trade
secret information of Tandy Corporation and
Microsoft. Use, reproduction or publication of any
portion of this material without the prior written
authorization by Tandy Corporation is strictly
prohibited.

Second Edition: 10 9 8 7 6 5 4 3 2

To Our Customers. • •

The TRS-80® Model III Computer is a very powerful tool for business, home and
recreation . Twenty years ago, this capability would have cost hundreds of times as
much as your Model III cost, and would have taken up an entire room.

In spite of its power and internal complexity, the Model III can be quite simple to
operate. In fact, you can determine just how' 'technical'' a machine you want it to
be.

At the simplest level of operation, you can use Radio Shack prepared cassette
programs. All you will need to know is how to load and run a cassette program, and
how to operate the cassette recorder. If this is where you want to start, read
Chapters 1 through 6 in the Operation Section. You may also want to read about
CLOAD and SYSTEM in Chapter 16 in the Language Section.

If you want to write your own programs and you are a beginner, read Chapters I
through 6 in the Operation Section, then start reading the book, Getting Started
with TRS-80 BASIC. That , plus several other Radio Shack books , can guide you to
becoming a programmer in BASIC and Z-80 language (''machine code'').

If you already know BASIC , and especially if you have experience on a TRS-80

Model I, read the entire Operation Section of this manual, as well as the Appendix
which compares the Model I and Model III. The Model III has many unique
features and some very important differences . A few minutes spent before you
press (ENTER) could save you hours later.

About This Manual

This manual contains operating instructions and a description of Model Ill BASIC. It
is arranged for easy reference, whether you are seeking simple or technical
information. Pages are numbered sequentially, and there is a comprehensive Index
at the end of the book.

If you are a beginner, don't worry about the technical parts in the Operation
Section. The beginning of each chapter is for you. (When you get to the POKE
statements, you can skip ahead to the next chapter. ..) You don't need to read past
Chapter 6. Then , when you learn simple BASIC programming, you can return and
try out all the ''goodies'' packed into your Model III.

Very Important ote

Before you even plug in your Model Ill read Chapters 2 and >-00
matter how much you think you know. Thi appr whether you
haveac tte-ordi k-based y em.

Remember, when all I fail , read the in tructions!

-ill TRS-80 MODEL Ill
-

Contents
Operation Section

1 / A Brief Description of the Computer . 1

2/ Installation . 5

3/ Operation . 9
Power-On □ RESET Switch □ Power-Off □ Start-Up Dialog
D Modes of Operation D Sample Session

4/ Using the Keyboard. 19
Capitals and Lowercase D Special Keys D Control Codes

5/ Using the Video Display 23
Character Size D Cursor D Scroll Protection D Text D
Graphics D Space Compression D Special Characters

6/ Using the Cassette Interface 29
Cassette Transfer Speed D Loading Errors D Saving a BASIC
Program on Tape D Loading a BASIC Program from Tape D
How to Search for a Program D Loading a SYSTEM Tape D
Searching for a Program

7/ Using a Line Printer 35
Line Printer vs Video Display Output D Printer Control
Features D Print Screen Function

8/ Using the RS-232-C Interface . 41
What is an Interface? D Using the Model Ill as a Terminal D
Programming the RS-232-C

9/ Routing Input/Output . 49
To Route from One Device to Another D Routing Multiple
Devices

10/ Real-Time Clock ... 53
To Set the Clock □ To Read the Clock □ To Display the Clock

11 / Input/Output Initialization . 57

12/ Technical Information . 59
To Protect High RAM D ROM Subroutines D Memory Map
D Summary of Important ROM Addresses D Summary of
Important RAM Addresses

13/ Troubleshooting and Maintenance . 85
Symptom/Cure Table D AC Power Sources D Maintenance

14/ Specifications . 89

ii

Power Supply D Microprocessor D RS-232-C Interface
D Parallel (Printer) Interface D Cassette Interface

BASIC Language Section
15/ BASIC Concepts. 95

16/ Commands. 125

17/ Input-Output Statements 133

18/ Program Statements 147

19/ Strings. 163

20/ Arrays . 173

21/ Arithmetic Functions 179

22/ Special Features .. 185

23/ Editing . 195

Appendices
A/ Model Ill Summary 205

Special Characters and Abbreviations D Commands D
Statements D Functions D Reserved Words D Program
Limits D Memory Use D Accuracy D

B/ Error Codes. 223

Cl TRS-80 Model Ill Character Codes . 227
Keyboard/Display Characters D Graphics D Special
Characters D Video Display Worksheet D

0/ Internal Codes for BASIC Keywords . 237

E/ Derived Functions 239

F/ Base Conversions . 241

G/ Model I to Model Ill Program Conversion Hints. 245

H/ Glossary. 24 7

I/ RS-232-C Technical Information 251

Index .. 255

For Warranty and Customer Information, see the back cover and
inside back cover.

iii

l+?i·ft11' -# ., a ft

OPERATION

1 / A Brief Description
The Radio Shack TRS-sor Model Ill is a ROM-based computer system consisting of:

• A 12-inch screen to display results and other information
• A 65-key console keyboard for inputting programs and data to the Computer
• A Z-80 Microprocessor, the ''brains'' of the system
• A Real-Time Clock
• Read Only Memory (ROM) containing the Model Ill BASIC Language (fully

compatible with most Model I BASIC programs)
• Random Access Memory (RAMl for storage of programs and data while the

Computer is on (amount is expandable from" 16K" to "48K", optional extra)
• A Cassette Interface for long-term storage of programs and data (requires a

separate cassette recorder, optional/extra)
• A Printer Interface for hard-copy output of programs and data (requires a

separate line printer, optional/extra)
• Expansion area for upgrading to a disk-based system (optional/extra)
• Expansion area for an RS-232-C serial communications interface (optional/extra)

All these components are contained in a single molded case, and all are powered via
one power cord.

Video Display Screen

Displayable characters include the standard 96 text-characters with the upper and
lowercase alphabet; 64 graphics characters; and 160 special TRS-80 characters. In
addition, there are numerous control and space-compression characters. Some of
the character sets can be switched in and out by BASIC and other programs.

Keyboard

The keyboard allows entry of all the standard text and control characters. It also
includes a 12-key section for convenient numeric entry. From the keyboard, you
can select either all-capitals or upper and lowercase entry. The (BREAK) key is
designed to return control to you during any operation, including cassette
inpuUoutput or line printer output. Every key has an auto-repeat feature.

1

Z-80 Microprocessor

This is the central processing unit-where all the' 'thinking'' is done. In the Mode!
III, the microprocessor operates at a speed of over two million cycles per second.

Read Only Memory (ROM)

This is where the Computer's built-in programs are stored, including the TRS-80
BASIC language. TRS-80 BASIC is fully compatible with the Level II language used in
Model I TRS-80's. Each time you power-on the Computer, this ROM program takes
charge of the microprocessor, enabling you to type in simple BASIC-language
instructions.

The Model III contains a'" 14K' " ROM, meaning it contains 14 * 1024 = 14336
characters (''bytes'') of permanently programmed memory.

Random Access Memory (RAM)

This is where your programs and results are stored while the Computer is on. It is
erased when you turn the Computer off.

The Model Ill can be equipped with 16K , 32K or48K of RAM I I K = 1024 bytes).

Peripherals

These are devices you can add to your Computer to increase its usefulness in
programming and data storage. The Model III contains the necessary "interfaces"
to simplify the addition of many peripherals.

Cassette

For long-term storage of programs and data, simply connect a cassette recorder to
the Computer, and save the information on tape.

For program storage , you may select either High or Low transfer rates (use Low for
compatibility with Model I, High for faster saves and loads).

2

OPERATION

Printer

You may connect any Radio Shack' 'parallel interface'· printer to the Model III;
this will give you' 'hard-copy'' capability for program listings, reports, mailing
lists, invoices, etc.

Other Enhancements

The Model III contains space for a mini-disk controller and one or two mini-disk
drive units. The Computer will accommodate one or two external drive units as
well.

With a one-, two-, three- or four-drive system, you will be able to store and retrieve
programs and data both quickly and reliably. Your Computer will then be under the
control ofTRSDoser~, the powerful Radio Shack Disk Operating System.

You can also add an internal RS-232-C serial interface. This will allow your
computer to communicate with an RS-232-C equipped computer, serial line printer
or other serial device.

3

OPERATION

2 I Installation
Carefully unpack the Computer. Remove all packing material and save it in case
you ever need to transport the Computer. Be sure to locate all cables, papers, etc.,
that may be included in the shipping carton.

Place the Computer on the surface where you '11 be using it. An appropriate power
source should be nearby, so that no extension cord will be required.

Do not connect the Computer to the AC power source yet.

Connection of Peripherals

Before connecting any peripherals (for example, line printer and cassette recorder),
make sure the Computer and the peripheral devices are turned off.

Connect all peripherals to the appropriate jacks on the bottom and rear of the
Computer. Refer to Figure I for location of connection points. For interconnections
between cables and peripherals, refer to the Owner's Manual supplied with the
peripheral device.

Note: All cables should exit to the rear of the unit so that no binding occurs.

5

1
- i ll TRS-80 MODEL Ill

..
'

0 On/Off Switch e 110 Bus Jack. For future expansion.

• Disk Expansion Jack. Shown with cable G Cassette Jack. Shown with cable con-
connected . Cable is supplied with external nected. Cable and cassette recorder are
drives (optional/extra). optional/extra. Black mini-plug connects to

• recorder EAR; gray mini-plug to recorder
Parallel Printer Jack. Shown with cable con- AUX; gray submini-plug to MIC REMote con-
nected. Cable and printer are optional/extra. trol.

0 RS-232-C Jack. Shown with cable G AC Power Cord.
connected. Cable and RS-232-C Interface

0 are optional/extra . Video Contrast Adjustment.

0 Video Brightness Adjustment.

Figure 1. Connection of peripherals and location of controls.

6

OPERATION

Connection of a Cassette Recorder

The following instructions use the CTR-80A recorder (Radio Shack Catalog Number
26-1206) as an example. If you use a different recorder, connection and operation
may vary.

Note: You do not need to connect the Cassette Recorder unless you plan to record
programs or to load taped programs into the TRS-80.

A TRS-80 to Cassette Recorder connection cable is included with the CTR-80A ; we
suggest that you use this specially designed cable.

1. Connect the short cable (DIN plug on one end and three plugs on the other) to the
TAPE jack on the back of the Computer . Be sure you get the plug to mate
correctly.

2. The three plugs on the other end of this cable are for connecting to the recorder.
3. A. Connect the black plug into the EAR jack on the side of the recorder. This

connection provides the output signal from the recorder to TRS-80 (for
loading Tape programs into TRS-80).

B. Connect the larger gray plug into the A UX jack on the recorder . This
connection provides the recording signal to record programs from the
TRS-80 onto the tape.

Leave the AUX plug in whether you are recording or playing back
cassette data.

C. Connect the smaller gray plug into the smaller MIC jack on the recorder.
This allows the TRS-80 to automatically control the recorder motor (turn
tape motion on and off for recording and playing tapes .)

Note: Do not plug a remote microphone ora dummy plug into the larger MIC jack.

Connection to an AC Power Source

Make sure the Computer and all peripherals are off.

The AC Power Cord exits from the rear of the Computer. Connect it and all
peripherals to an appropriate power source . Power requirements for Radio Shack
products are specified on the units and in the Owner's Manual Specifications.

For convenience , you may connect all components to a single' 'power strip '' such
as Radio Shack ' s 26-1451 Line Filter. This will allow you to tum on the entire system
with a single switch. Take care not to exceed the current capacity of the power strip.

7

OPERATION

3 / Operation

Power-On

The following instructions explain how to start up and use the Model lII as a
ROM-based system only.

If you have a Disk System and are going to load TRSDOS, follow the power-up

instructions given in the Model III Disk System Owner's Manual. If you have a Disk
System but you are not going to load TRSDOS, read the instructions later in this
chapter.

The Computer and all peripherals must be off.

First turn on all peripherals, then turn on the Computer. (If you have all the
components connected to a power strip , just turn on the power strip .)

After a few seconds, the following message should appear on the Video Display:

Cass?

The meaning of this message will be explained later.

If the message does not appear:

A. The Video Display may need Brightness or Contrast adjustment. See Figure 1
for location of these controls.

B. If the message still doesn't appear, then turn off the entire system, recheck all
connections, and try again. For further assistance, see ''Troubleshooting and
Maintenance.''

Do not turn any peripherals off while the Computer is in use; to do so could cause
abnormal operation (the Computer could restart or' 'hang up'', requiring you to
reset or turn the system off and on again).

9

RESET

RESET is the orange-colored button at the upper right corner of the keyhnard.
To'' start over'' at the power-on message, you do not have to turn the unit off and
on again. Pressing the RESET button will have the same effect.

Note: Resetting the Computer does not erase the contents of RAM. However, the
BASIC language interpreter will start over, thus ''losing'' any program or data you
had in memory.

To interrupt a program or operation without losing your BASIC program and data,
hold down the (BREAK) key.

Power-Off

First turn off the Computer, then all other peripherals.

If you turn the Computer off for any reason, leave it off for at least 15 seconds before
turning it back on again. The Computer's power supply needs this time to discharge
its stored energy before starting up again.

Whenever you turn off the Computer, all programs and data are erased. So be sure
to save your information (e.g., on cassette) before turning off the Computer.

Start-Up Dialog

When you turn on or reset the Computer, it asks you two questions. First:

Cass?

This question lets you determine the rate at which programs and data will be
transferred to and from cassette. You can select either Low (500 baud) or High (1500

baud). Type

L

for Low, or

H
for High.

10

If you press (ENTER) without typing anything, High will be used.

For further details, see ''Using the Cassette Interface.''

Next the Computer will ask:

Memory Size?

OPERATION

This question lets you set an upper limit to the RAM which will be used to store and
execute your BASIC programs. Simply press (ENTER) in response to this question.
This tells the Computer to make the full amount of RAM available for use by your
BASIC program.

Advanced programmers may want to reserve some memory for a
machine-language ("Z-80") program or subroutine. Instructions for doing this are
included in the ''Technical Information'' chapter.

After you respond to the '' Memory Size'' question, BASIC will start with this
message:

Radio Shack Model Ill Basic
(c) '80 Tandy
READY
>

The Computer is now ready for use.

Special Instructions for Disk System Owners
u Ing Model m without TRSOOS

If you have a disk drive and disk conttoller installed, hold down the key
whenever you tum on or reset the Computer. Thi tell the Computer that you
are not going to use the di k capability.

11

Modes of Operation
BASIC has four modes of operation:
• Immediate mode-for typing in program lines and immediate lines
• Execute mode-for execution of programs and immediate lines
• Edit mode-for editing program and immediate lines
• System mode-for loading machine-language tapes and for transferring control

to machine-language programs

Immediate Mode

Whenever you enter the immediate mode , BASIC displays a header and a special
prompt:

READY
> ■

(header)
(prompt followed by blinking block' 'cursor'')

While you are in the immediate mode, BASIC will display the prompt at the
beginning of the current logical line (the line you are typing in).

In the immediate mode, BASIC does not take your input until you complete the
logical line by pressing (ENTER). This is called '' line input'' , as opposed to
'' character input''.

Interpretation of an Input Line

BASIC always ignores leading spaces in the line-it jumps ahead to the first
non-space character. If this character is not a digit, BASIC treats the line as an
immediate line. If it is a digit, BASIC treats the line as a program line.

For example:

PRINT "THE TIME IS"; TIME$ (ENTER)

BASIC takes this as an immediate line.

If you type:

10 PRINT"THETIME IS";TIME$(ENTER)

BASIC takes this as a program line.

Immediate Line

An immediate line consists of one or more statements separated by colons. The line
is executed as soon as you press (ENTER). For example:

CLS: PRINT "THE SQUARE ROOT OF 2 IS"; SQR(2)

is an immediate line . When you press (ENTER), BASIC executes it.

12

OPERATION

Program Line

A program line consists of a line number in the range [0,65529], followed by one or
more statements separated by colons. When you press (ENTER) , the line is stored in
the program text area of memory , along with any other lines you have entered this
way . The program is not executed until you type RUN or another execute command.
for example:

100 CLS: PRINT "THE SQUARE ROOT OF 2 IS"; SQR(2)

is a program line . When you press (ENTER) , BASIC stores it in the program text area .
To execute it, type:

RUN(ENTERl

Special Keys in the Immediate Mode

0

0

The question mark can stand for the commonly used keyword
PRINT. For example, the immediate line:

?"HELLO."

is the same as the immediate line:

PRINT "HELLO."

Note: L? does not mean LPRINT .

This abbreviation can be used in a program, too.

The period can stand for' 'current program line'', i.e., the last
program line entered or edited. The period can be used in most
places where a line number would normally appear . For example,
the immediate line:

LIST.

tells BASIC to list the current program line .

The single-quote tells BASIC to ignore the rest of the logical line. It
is an abbreviation for the BASIC keyword REM. When used in a
multi-statement line, it does not have to be preceded by a colon.
For example , when you type in the line:

PRINT 1 + 1 ; '2 + 2

BASIC will print the sum l + I but not 2 + 2.

This abbreviation can be used in a program, too.

(SHIFT)(I)0 Causes the Computer to print the Display contents to the line
printer, if available. Press (BREAK) to interrupt this operation . Th is
key sequence works in the other modes too . Note: You must use
the lefthand (SHIFT) key.

13

f
l

-
-,. TRS-80 MODEL Ill

Execute Mode

Whenever BASIC is executing statements (immediate lines or programs) it is in the
execute mode. In this mode, the contents of the Video Display are under program
control.

Special Keys in Execute Mode

(SHIFT) @Pauses execution. Press any key to continue.

(BREAK) Terminates execution and returns you to the command mode.

Edit Mode

BASIC includes a line editor for correcting program lines. To edit a program line,
type in the command:

EDIT line number

where line number specifies the desired line.

When the editor is working on a program line, it displays the numberofthe line
being edited.

In the edit mode, the Keyboard input is character-oriented, rather than
line-oriented. That is, BASIC takes characters as soon as they are typed in-without
waiting for you to press (ENTER).

See the chapter on editing for details.

System Mode

In this mode, you can load and execute machine-language programs. By
''machine-language'', we mean the set of machine instructions recognized by your
Computer's Z-80 microprocessor. In this 1:1anual, we will usually call it "Z-80"

programming, in contrast to BASIC programming.

You don't have to understand the Z-80 language to use some of the programs
available. For example, several Radio Shack games are written in Z-80 code rather
than in BASIC. To load such programs from tape, you use the System Mode.

Z-80 programming opens up whole new worlds of possibilities, but it is somewhat
more demanding than BASIC programming.

14

OPERATION

The Technical Information chapter in this manual is written for those who are
familiar with the Z-80 instruction set and other fundamental machine concepts. If
you would like to explore these subjects , read:

TRS-80Assembly Language Programming, by William Barden, Jr. Rad io Shack
Catalog Number 62-2006 .

Although the book was originally written for the TRS-80 Model I, it applies almost
exactly to the Model III as well .

For further details, see ''Cassette Interface'' in this Operation Section , and SYSTEM

in the Language Section .

Sample Session

This section will give you a step-by-step example of what ' s needed to type in a
program and run it. We will be showing you the Computer/operator dialog exactly
as it appears on the Display. If you have never used a computer keyboard before ,
read Using the Keyboard before trying this sample session.

You don't need to know BASIC programming to go through this session-it is just
an exerciser. If you are curious about the words used in this program, look them up
on the Quick Reference Card supp lied with your Computer, or in the Index of this
manual.

Special Notation Used in this Dialog

BOLDFACE MATERIAL Provided by the Computer-you don,' t type
it in.
Means '' Press the (ENTER) key . ''

This tells you to use the upper/lower
case-caps only switch. You do this by
pressing (SHIFT) and (ID together .
This means '' press the S key '' to skip over
to the next eight-column boundary. We
usually do this just for visual effect.

15

Answering the Start-Up Questions

Reset the Computer. Then follow this session.

Cass? (ENTER)

Memory Size? (ENTER)

Radio Shack Model Ill Basic

(c) '80 Tandy

READY

> ■

The blinking block after '' >'' is the ''cursor''. It tells you where the next character
you type will be displayed .

Now continue:
>NEW (ENTER)
READY
>AUTO (ENTER)
10 CLS (ENTER)
20 PRINT "Hl-l'M YOUR TRS-80 MICROCOMPUTER!" (ENTER)
30 PRINT "(SHIFT) CID What makes me so smart? "(SHIFT) CID (ENTER)
40 PRINT "(SHIFT) (ID Millions of these: "(SHIFT) CID (ENTER)
50 PRINT CHR$(21) (ENTER)
60 FOR I = 1 TO 256 (ENTER)
70 G PRINT CHR$(253); CH R$(254); (ENTER)
80 NEXT I (ENTER)
90 PRINT CHR$(21) (ENTER)
100 END (ENTER)
110(BREAKl
READY
> ■

Now the program is in memory. To look at it , type:

> LIST (ENTER)

It should look like this:

10 CL..S
20 PRINT "HI! I'M YOUR TRS-80 MICROCOMPUTER!"
30 PRINT "What makes me so smart?"
40 PRINT "Millions of these:"
50 PRINT CHR$(21)
60 FOR I= 1 TO 256
70 PRINT CHR$(253); CHR$(254);
El0 NEXT I
90 PRINT CHR$(21)
100 END

16

OPERATION

Check each line. Don't worry about spacing; however, if anything else is different,
simply re-type the incorrect line. For example, suppose you mistakenly type in line
90 like this:

90 PRINT CHR$(201)

To correct it, simply type:

>90 PRINT CHR$(21) (ENTER)
> ■

When everything is correct, you can run the program by typing:

>RUN (ENTER)

17

OPERATION

4 I Using the Keyboard
The keyboard allows entry of all the standard tex t and control characters. As with
ordinary typewriters, use (SHIFT) to enter the upper symbol on those keys contain­
ing two symbols . For example , toentera "!" , press (SHIFT) CD.

Capitals and Lower Case (SHIFT)@

The A-Z keys can produce either upper or lowercase characters. There are two
modes of operation: CAPS , in which the A-Z keys always produce capital letters; and
ULC (upper/lowercase) , in which the A-Z keys produce lowercase unless you press
(SHIFT).

When you start the Computer, the keyboard is in the CAPS mode . To switch to ULC,

press (SHIFT)(ID. To switch back, press (SHIFT) CID again. (SHIFT) Ci) is a' 'toggle '':
each time you press it , you switch from one mode to the other.

Special Keys

Certain keys have special functions in BASIC. Rather than accepting them as
keyboard data , BASIC performs the specified function .

Key

8
8
(SHIFT)(3

(SHIFT)8

(SHIFT)@

(ENTER)

Function

Backspaces and erases the last character typed.

Tabs over to the next eight-column boundary.

Starts over at the beginning of the line.

Converts to 32 characters/line .

Pauses program execution . Press any key to continue .

Enters the line. BASIC will not interpret a line until you
press (ENTER).

Cancels the current line , erases the display, converts to
64 characters/line , and positions the cursor to the upper
left comer ("home'') .

19

-- TRS-80 MODEL Ill

Special Kevs, continued.

Other Features

Interrupts the current program or operation and
prepares the Computer for another keyboard command.
Use to cancel a cassette or line printer operation, or to
break out of a BASIC program.

Activates the Print Screen function, copies the contents
of the Screen to the Printer. Press (BREAK) to terminate
this function and return to the immediate mode.

Every key has a repeat feature: when you hold a key down for approximately one
second, that key begins producing a stream of characters.

The keyboard includes a 12-key section for convenient numeric entry. Each of
these keys is equivalent to the matching key on the standard keyboard section.

Control Codes*

* If you are unfamiliar with the concept of character codes, see the ASCII entry in the
Glossary (Appendix). Also see the table of character codes in the Appendix.

You can produce 32 special control characters (ASCII Codes 0-31) from the
Keyboard. For example,

Key ASCII Name Code

8 Backspace 8

8 Tab 9
(1) Line Feed 10
(ENTER) Carriage Return 13

20

OPERATION

You are not limited to these specially labeled keys. A special two-key combination
allows the regular text keys to create additional control characters. Use this
procedure:

I. Hold down (SHIFT)
2. Hold down Cf)
3. While holding down (SHIFT) and Cl), press the desired character. For example:

(SHIFT)(!)©= "ControlC" = Code# 3.

Note: You must use the lefthand (SHIFT) key.

For a complete list of keyboard characters available, see the Appendix.

21

OPERATION

5 I Using the Video Display

Character Size

There are 16 lines on the display , and two character sizes: normal (64 characters per
line-" cpl "), and double-size , or 32 cpl.

The Computer starts in the 64 cpl mode. To change to 32 cpl, press (SHIFT)E) in the
immediate mode or execute the BASIC statement:

PRINT CHR$(23)

To return to 64 cpl, press (CLEAR) in the command mode, or execute the BASIC

statement:

CLS

Cursor

The cursor indicates the current display position. When you start BASIC, the cursor
is a blinking block. You can change the cursor character and you can make it solid
(non-blinking) .

Memory location 16412 contains the blink/non-blink status . When it contains a
zero, a blinking cursor will be used. When it contains a non-zero value, a
non-blinking cursor will be used.

For example , to make a solid cursor, execute the BASIC statement:

POKE 16412, 1

To make a blinking cursor, execute the BASIC statement:

POKE 16412, 0

Memory location 16419 contains the ASCII code of the cursor character. When you
start BASIC, this address contains 176. To change the cursor , use the POKE

statement. For example,

POKE 16419, 63

changes the cursor to a "?", since 63 is the ASCII code for a question-mark .

23

You can select any ASCII code from zero to 255.

To restore the cursor to its original character, execute this BASIC statement:

POKE 16419, 176

To tum the cursor on in the execute mode, execute the statement

PRINTCHR$(14)

To turn it off, use

PRINT CHR$(15)

Scroll Protection

Display ''scrolling'' occurs when the Computer moves all the text up one line to
make room for a new line on the bottom row of the Display. When scrolling occurs,
the top line on the Display is erased from the Display.

The Model III will let you protect from scrolling up to seven lines on the top of the
Display. For example, suppose you are printing a table. You can put the column
headings in a scroll protect area, so they will not be lost when scrolling takes place.

Memory location 16916 controls the size of the scroll protect area. A zero in this
one-byte location means no lines are protected. A one means one line (the top line)
is protected. And so forth.

For example, to protect the top four lines from scrolling, execute the BASIC

statement:

POKE 16916, 4

To restore the display to its original condition (no scroll-protect), execute the BASIC

statement:

POKE 16916,0

If you store a value greater than seven in this address, the Computer interprets the
value in modulo eight. That is, the number is divided by eight and the remainder is
used.

The following program demonstrates the scroll-protect feature:

10 CLS: POKE 16916,3 'PROTECT TOP 3 LINES
20 PRINT "THESE TOP THREE LINES WILL NOT BE SCROLLED"
30 PRINT "BUT THE REST OF THE SCREEN WILL."
40 PRINT"--"
50 FOR I= 1 TO 100
60 PRINT "THIS LINE IS IN THE NON-PROTECTED AREA SO WILL SCROLL"
70 NEXT I
80 POKE 16916,0 'REMOVE SCROLL PROTECTION

24

OPERATION

Text Characters

The Model III Display can produce the standard ASCII text characters, including the
upper and lowercase alphabet.

All text characters are created on an eight-by-eight matrix for excellent definition.

The following BASIC program will display all 96 text codes and characters:

1 (2) CU3
20 FOR I= 32 TO 127
30 PRINT@ CI-32) * 8, I; CHR$CI);
4.,1 NEXT I

Many of these characters can be keyed in directly from the keyboard; others can
only be generated by reference to their ASCII codes.

Note: The (I) key is echoed on the display as [instead of as an up-arrow. This is
because Model III produces standard ASCII characters on its display. However, if
the program calls for an up-arrow, the left-bracket will serve the same purpose.

Graphics Characters

The Model III Display has 64 graphics characters, consisting of all possible on-off
combinations in a two-by-three matrix:

The graphics characters are produced by codes 128 through 191. The following
program will display them all:

1,~ CLS
20 FOR I= 128 TO 191
30 PRINT@ (I-128) * 8, I; CHRS(I);
40 NEXT I

25

-- TRS-80 MODEL Ill
. - .· ..

Space Compression Characters

When you start BASIC, characters 192 through 255 are defined as space compression
codes: 192 generates zero spaces: 193, one space; and so forth, up to 255, which
generates 63 spaces.

These codes are useful for storing Video Display text in a minimal amount of
memory. For example, the following line contains 55 characters (superior numbers
indicate the number of blank spaces between letters):

21 spaces 18 spaces

NAME ADDRESS PHONE

There are two sequences of blanks containing a total of 39 characters. By replacing
the two space-sequences with two compression codes, we can save 39 2 37

characters.

When the data is displayed, the space compression codes will be' 'expanded'' into
the appropriate number of spaces.

The following BASIC program illustrates this example:

'.::i CLS
10 POKE 16526, 105 'LSB OF SINITIO ENTRY ADDREJS
20 POKE 16527, 0
:m X :::: U!:->f< UZI)
1.~0 CLEAf~ 100

'MSB
'CALL SINITIO

50 A$= "NAME" + CHRS(192+21) + "ADDRESS"
"PHONE"
60 PRINT "THE LENGTH OF THE STRING IS"; LEN(AS)
70 PRINT "HERE IT IS:"
80 PRINT AS

Special Characters

The Model III also features 96 special characters. The first 32 may be displayed by
POKEing the appropriate code into video RAM (addresses 15360 to 16383); the
remaining 64 may be displayed via the PRINT statement.

This program will display the first 32:

10 CLS
20 FOR I= 0 TO 31
30 POKE 15360 +I* 16, I
4(-'.I NEXT I
50 PRINT@ 640, "";

26

+ CHRS(l.92+18) +

OPERATION

The remaining 64 must first be '' switched in'' and then may be displayed via PRINT.

Codes 192 through 255 normally function as space compression codes; however, a
software switch will activate the special character set. The statement:

PRINT CHR$(21)

switches back and forth between space compression and special characters .

Another software switch selects an alternate set of special characters (Japanese
Kana characters). Each time you execute the statement

PRINT CHR$(22)

the active/inactive sets are swapped.

The following program will switch in the special characters and display both sets of
them.

:l CL..S
10 POKE 16526, 105 'L..SB OF SINITIO ENTRY ADDRESS
20 POKE 16527, 0 'MSB
30 X = USR(0) 'CALL SINITIO
40 PRINT CHR$(21) 'SWITCH IN SPECIAL CHARACTERS
50 INPUT "PRESS <E NTER > TO SEE SPECIAL CHARACTERS"; X
60 FOR I= 192 TO 255
70 PRINT CHRS(I);
80 NEXT I
90 PRINT
100 INPUT "PRESS <E NTER > TO SWITCH TO ALTERNATE SET"; X
110 PRINT CHR$(22); 'SWITCH IN ALTERNATE SET
120 INPUT "PRESS <ENTER> TO RETURN TO NORMAL AND END"; X
130 PRINT CHR$(22); CHR$(21)

27

OPERATION

6 I Using the Cassette Interface
Model Ill's built-in cassette interface allows you to store data and programs with a
cassette recorder such as Radio Shack's CTR-80A , Catalog Number 26-1206.

Connect the recorder to the Computer according to Figure l in this manual; for
further connection instructions, refer to the cassette recorder owner's manual.

Cassette Transfer Speed

As explained previously , you select either Low or High cassette speed when you
start BASIC.

If you want to load Model I Level II programs, you must select Low.

(The actual speed for Low is 500 baud, which is approximately 63 characters per
second; for High, 1500 baud , or 190 characters per second . For short programs, you
won't notice a three-to-one difference in loading times, due to the ''overhead''
required by any taped data. However, for longer programs, the difference in
loading/saving times will approximate three-to-one.)

You do not have to restart BASIC to change the cassette speed. This speed is
determined by the contents of memory address I 6913. When this one-byte location
contains zero, Low speed (500 baud) is used; when it contains any non-zero value,
High speed (1500 baud) is used.

For example, to select 500 baud , execute the BASIC statement:

POKE 16913, 0

To select 1500 baud, execute the BASIC statement:

POKE 16913, 1

29

Loading Errors

There are three messages that may appear in the upper right of the Display during a
tape input operation . They tell you that the tape operation was unsuccessful and
needs to be repeated .

Message

C*

D*

BK

Meaning

Checksum Error during loading of as YSTEM tape

Data Error during loading of a BASIC program

You pressed (BREAK) and cancelled the operation

The first two errors may be caused by an incorrect volume setting. Adjust the
volume and try again. If you still have problems, recheck the cassette recorder
connections . Another possible cause is dirty recorder heads. Clean the heads as
explained in the cassette owner's manual . If none of this helps , the data on the tape
may have been destroyed by static electricity or some other cause.

Saving a BASIC Program on Tape

When you want a long-term copy of a BASIC program (one that won't have to be
typed in again), simply save it on tape with the CSA YE command .

The program should be in memory. Be sure you have selected the desired cassette
transfer speed (500 or 1500 baud). In general, you should use 1500 baud, since it is
faster and requires less tape .

1. Insert a blank cassette into the recorder (use Radio Shack's leaderless tape for
best results).

2. Prepare the recorder to RECORD.

3. Type :

CSA VE "P" (ENTER)

The Computer will save the program on tape.

When the process is completed, the Computer will display:

READY
>■

In this example, we used "P" as the file name; you can choose any single character
except a double-quote. Enclose the character in double-quotes as shown in our
example.

30

OPERATION

It is a good idea to save the program at least twice, preferably on separate cassettes.
That way, if one cassette is lost or erased, you have an extra copy.

When you want to load the program in later , you can specify the file name, in which
case BASIC will search for that file name; or you can omit the file name , in which
case BASIC will load the first program on the tape .

Loading a BASIC Program from Tape

Be sure the Computer's cassette speed matches that of the recorded program (the
speed at which it was CSA VEd).

1. Prepare your recorder to PLAY the recorded cassette . Adjust the volume to the
level recommended for 500 or 1500 baud. See Figure 2 on the next page .

2. Type:

CLOAD (ENTER)

The Computer will load the first program on the tape . Whil e the program is
loading, two asterisks will appear on the upper right of the Display. The one on
the right will blink after every 64th character of data is received.

When the program is loaded, the Computer will display the message:

READY
>■

3. Type:

LIST (ENTER)

to list the program you have just loaded (just for verification).

4. You may now run the program by typing:

RUN (ENTER)

31

-- TRS-80 MODEL Ill
- .· ...

How to Search for a Program

If the tape contains different programs on the same side, you can make the
Computer search through them until it reaches the desired program. To do this , just
specify the name of the program. For example, if the program is named "P", then
type in this command:

CLOAD ''P" (ENTER)

While the Computer is skipping a non-matching program, it will display the file
name of that program .

Note: If the program you named is not on the tape , the Computer will continue to
wait for it , even after the tape has run out. Hold down the (BREAK) key until the
Computer returns with the message:

READY

> ■

Recorder
Model

CTR-80,S0A

User-Generated Pre-Recorded From
Radio Shack

5-7 4-6

Figure 2. Recommended levels for loading programs from
tape.

32

OPERATION

Loading a SYSTEM Tape

In addition to BASIC programs, you may load machine-language programs from
tape. Such programs are stored in a different format on the tape; we call them
SYSTEM tapes. Radio Shack sells several machine-language programs on cassette,
for example, Micromusic and Editor/ Assembler.

You can also create your own SYSTEM tapes , using the Editor/ Assembler Package.

Before loading the tape, be sure the Computer's cassette speed matches that of the
recorded program.

1. Prepare your recorder to PLAY the recorded cassette. Adjust the volume to the
level recommended in Figure 2.

2. Type:
SYSTEM (ENTER}

The Computer will display the monitor mode prompt:

*?

3. Type in the program's file name. For example, if the program is named
EDTASM, you would type:

EDTASM (ENTER)

The Computer will load the program. While the program is loading, two
asterisks will appear on the upper right of the Display. The one on the right will
flash after every 64th character of data is received.

4. When the Computer has loaded the program, it will display another monitor
prompt:

*?

What you do next depends on the program you have just loaded.

A. If you want to load another program, then prepare the next cassette tape and
repeat Step 3.

B. If you want to return to BASIC, then press (BREAK}.

C. If you want to run the machine-language program you just loaded. then type in a
slash symbol''/'' followed by the' 'entry address'' and press (ENTER}, or simply
type in the"/'' and press (ENTER}. Specific instructions will be provided with
the SYSTEM tape.

33

34

,.

For example , to start the program at address 32000, type:

*? I 32000 (ENTER)

To start the program at the address specified by the SYSTEM tape , type:

*? / (ENTER)

OPERATION

7 / Using A Line Printer

Any Radio Shack ''parallel interface'' printer may be connected to the Model Ill.
There are some differences in printer functions available, so check in the printer
owner ' s manual for these details.

Line Printer vs Video Display

Output

Output to the line printer is similar to display output; in fact , for the two major
display output operations, there are two matching line printeroutput operations:

Video Display Line Printer

PRINT LPRINT
LIST LLIST

These are described in the BASIC Language Section of this manual.

When you try to output information to the printer, the Computer will first see if a
printer is connected and ready to accept the data. If it is not , the Computer will
simply wait until the printer is available . During this time, you will not be able to
type in instructions from the keyboard.

To regain keyboard control in this situation , hold down the (BREAK) key until the
Computer displays

READY
>

Certain of the Video Display features are not available on the printer. For example:

• The graphics and special character sets cannot be output to the printer. However,
your printer may have its own special characters or'' graphics''. Check in the
owner's manual.

• The CLS and PRINT @ statements have no line-printer counterparts .

35

Printer Control Features

Output to a printer involves several variables:

• Maximum line width (How many print columns are there ?)

• Page length (How many print lines are on a page?)

• Printer status (ls the printer connected and ready to receive data and print it?)

In this section, we will explain how to set up the Model III to control all these
variables.

Setting the Maximum Line Length

In Model III BASIC, you can preset the maximum line length . If a line exceeds the
preset length, the Compu ter will automatically insert an end of line (carriage return)
so that the rest of the line will be output on a new line. The following paragraphs
explain why you may want to do this.

One important difference between display output and printer output is the
maximum line length. (A ''line'' is a stream of data characters terminated by a
carriage return (ENTER).)

The Model III Display has a maximum line length of 64 characters. If you PRINT a
line longer than this, the Computer simply ''wraps around'' to the beginning of the
next line.

Printers have a maximum line length , too , but this length differs for various
models. The response to an overflow (longer than maximum-length) line also
varies. Some models wrap around to the next line automatically. Others may lose
the extra data, and may begin abnormal operation when the line is too long .

Another consideration is paper width. Suppose your paper is only wide enough to
hold 80 characters-but the printer will accept lines ofup to 132 characters. In this
case , if you send a I ine longer than 80 characters, the printer will print part of the
information past the edge of the paper.

How to Set the Line Length

Memory address 16427 contains a value equal to the maximum line length less two.
For example, to set the maximum line length to 64, execute the BASIC statement:

POKE 16427, 62

Since the Display is 64 characters per line (cpl) , this setting will make line printer
output match Video Display output.

36

OPERATION

When address 16427 contains a value of 255, the maximum line length feature is
disabled. No matter how long the line is, the Computer will not insert carriage
returns in it. Remember, though , some printers automatically do this when the line
exceeds a specified length .

When you start BASIC, address 16427 contains a value of 255, so the maximum line
length function is disabled.

Page Controls

In many printer applications, you want to control the number of lines that are
printed on a page. For example, in printing forms or reports, when a given number
of lines have been printed, you want to advance the paper to the top of the next
page.

Model Ill BASIC has several features to help you do this. It keeps track of the
following information:

Data

Page size: number oflines per
page plus one . Initialized
to67=66+1.

Line count: number of lines
(carriage returns) already
printed plus one .
Initialized to one.

Memory Address

16424

16425

Most printers output six lines per inch; therefore standard 11 11 paper allows 66 lines,
which matches BASIC's initialization value .

To change the maximum lines/page setting , store the desired number of lines plus
one in 16424. For example, if your paper contains 88 lines per page, then execute this
BASIC statement:

POKE 16424, 89

When you start the Computer, position the paper to the top of the page ('' top of
form''). That way BASIC's initial page information is correct. Each time BASIC
outputs a line (i.e . , a carriage return), the line count is incremented.

Note: If your printer's maximum line-length is shorter than BASIC' s maximum line
length, the printer will insert carriage returns that BASIC isn' t allowing for.
Therefore BASIC's line count will not be accurate.

37

To prevent this from happening, make sure BASIC's maximum line length (stored in
address 16427) is no greater than that of your printer. You can find your printer 's
maximum line length in the printer owner's manual.

To do an automatic top of form (advancing the paper to the top of the next page) ,
p1int the ASCII "Form Feed" code , decimal I 2 . For example , execute the BASIC

statement:

LPRINT CHR$(12)

The paper will advance by the following amount:

Top of Form= Max. lines/page-Lines already printed

Each time you print a form feed, CHR$(12), BASIC resets the line count
automatically.

Sometimes you may want to reset the line count, for example , after manually
advancing the paper to the top of form . To do thi s , store a one in 16425 :

POKE 16425, 1

Checking the Printer Status

Unlike the Video Display, the printer is not always available. It may be
disconnected , off-line , out-of-paper, and so forth. In such cases, when you try
printer output, the Computer will wait until the printer becomes available. It will
appear to be ''locked up ' '. To regain keyboard control (and cancel the printer
operation), press (BREAK).

Suppose you have a program which uses printer output. If a printer is not available ,
you don't want the Computer to stop and wait for it to become available. Instead,
you may want to print a message like "PRINTER UNAVAILABLE" and stop.

To accomplish thi s, you need to check the printer status. The status is stored in
address 143 I 2 . AND this value with 240 . The result should eq ual 48 . If it doesn' t, that
means the Printer is unavai lable for some reason, and printer output is not possible.
For example, your program could execute these statements:

100 ST%= PEEK<14312) AND 240
120 IF ST%<> 48 THEN PRINT "PRINTER UNAVAILABLE.": STOP
130 PRINT "PRINTER IS AVAILABLE"

38

OPERATION

Print Screen Function

Model III has a very handy feature to give you a' 'snapshot'' of whatever is on the
Display. It will work whenever the Computer is scanning the keyboard (BASIC's
Immediate, Execute, Edit and System Modes). It does not work during cassette,
printer or serial l/0.

When you want to copy the Display contents to the printer, simply press:

together. The Computer will stop what it's doing and print the screen.

The Computer will print the entire display, blanks and all . If you are only interested
in printing the top portion of the display, press (BREAK) when those lines have been
printed.

If a printer is not available, the Computer will wait until it becomes available or
until you press (BREAK).

If the Display contains special characters or graphics characters, they will be
displayed as periods.

Note: You can also activate the Print-Screen function via the BASIC USR function.
See $PRSCRN in the Technical Information chapter.

39

OPERATION

8 I Using the RS-232-C Interface

What is an Interface?

It's a generalized means of communication between your TRS-80 and some external
device, providing the necessary conventions regarding data-identification,
transmission rates, send-receive sequences, error-checking techniques, etc.
However, an Interface does not provide the programming necessary to use any
particular TRS-80/ external device system.

For example , having the Interface installed does not automatically enable you to
send BASIC programs from one TRS-80 to another; to output to a line printer via the
Interface; etc. Such applications require '' driver programs '' which must be
custom-designed for the equipment you intend to use.

The Radio Shack RS-232-C Interface is designed to meet the EIA standards.
However, we cannot guarantee that it will work with all so-called ''RS-232-C

compatible'' devices . Nor do we commit ourselves to provide engineering and
programming support for such applications , or other special custom-use situations.

We do, however, guarantee that our Interface will function correctly with all our
own RS-232-C equipment.

The term RS-232-C refers to a specific EIA (Electronics Industries Association)
standard which defines a widely accepted method for interfacing data terminal
equipment with data communications equipment. The RS-232-C Interface is by far
the most universally used standard for interfacing data processing equipment. Most
video terminals, modems, card readers, line printers, mini-microcomputers, etc . ,
utilize the RS-232-C standard for data interchange between devices .

Adding the RS-232-C to your Model III TRS-80 opens up a whole new world of
compatibility. The Computer can then be programmed to communicate with a
serial printer, telephone modem, serial display terminal - almost any RS 232-C

device.

Note: The following information applies only if your Model III TRS-80 is equipped
with the RS-232-C Interface.

41

Using the Model III as a Terminal

Probably the most common use of the RS-232-C interface will be to allow the Model
Ill to act like a' 'terminal ' ' to another' ' host'' computer . In this application ,
whatever you type on the keyboard is sent via RS-232-C to the other host computer,
and whatever the host computer sends to you is displayed on your screen .

Before going into the details of RS-232-C operation , we'll show you a BASIC

program that sets up a simplified terminal operation .

1. Make sure the RS-232-C characteristics are set to match those of the host
computer. If they are not, then change them, as explained later in this chapter.

Note: For this BASIC Program, you must use a baud rate of 110. An equivalent
Z-80 program could use any baud rate.

2 . Connect the Model Ill to the host computer via the RS-232-C. You will need a
telephone interface (modem) or other means of communication.

3 . Type in and run the following BASIC program (you do not need to type in the
comments (material that starts with a single quote). The program displays
characters received via the RS -232-C, and sends characters you type in . It is for
demonstration only, and is not meant to function as a practical terminal. Notice
there are nu spaces between the" "in line 160.

5 DEFINT A- Z
10 POKE 16B90, 0
15 PC*E 16888,(2*16)+2
17 U1 ::: 16526
18 U2 c-::: 1652 7
20 PO•'(E U 1 , 912)
30 POKE U:2, f2l
40 X::: USRC0)
~:>121 RCV ::: 130
60 TX -· 85
70 CI ::: 1687:~
8(2) co ::: 1. 6880

'INTEGER VARIABLE FOR SPEED
'DON'T WAIT FOR SERIAL I/0
'TX/RCV AT BAUD RATE 110
'LSB OF USR CALL ADDRESS
'MSB OF USR CALL ADDRESS
'SET UP USR CALL, LSB

MSB
'CALL $RSINIT
'LSB OF $RSRCV
'L..SB OF $RSTX
'CHARACTER INPUT BUFFER
'CHARACTER OUTPUT BUFFER

912)' CHECK FOR SERIAL INPUT
1 00 PO•'(E U 1 , R CV 'SET UP USR CALL TO $RSRCV

., CALL $R!3RCV 110 X ::: USR(f2l)
12 0 CS= CHRSCPEEK<CI))
130 PRINT C$;
140' CHECK FOR KEYBOARD
150 C$:::: INKEY$
160 IF CS="" THEN 100
165 PRINT C$;
166
170
1812)
1912)
2012)

42

POKE CO, ASCCCS)
PC*E U1, TX
X = USR(f2l)
GOTO 112)12)

'LOOK AT INPUT BUFFER
'IF C = 0, NOTHING HAPPENS

INPUT

'NO KEY, SO GO CHECK SERIAL.
'DELETE THIS LINE IF HOST PROGRAM
'HAS AN ECHO FEATURE
'PUT CHAR. INTO OUTPUT BUFFER

"'"1

'SET UP USR CALL. TO $RSTX
'CALL SRSTX
'GO CHECK SERIAL INPUT

OPERATION

Programming the RS-232-C Interface

In this section , we will treat the RS-232-C just like any other inpuUoutput device, and
will explain how your BASIC program can use it. In Technical Information, we
explain how to use it in a machine-language ("Z-80") program.

For details about the RS-232-C signal conventions and theory of operation, see the
Appendix.

Selecting the RS-232-C Characteristics

Before using the RS-232-C interface to communicate with another device, you must
be sure your RS-232-C is set up to match the requirements of the other device.

So start by getting the following information about the other device. In the right
column, we list typical values used.

Characteristic

Baud Rate

Word Length (bits)

Parity

Stop Bits

Typical Values Used

110,150, 300, 600, 1200,
2400,4800,9600

5, 6,7,8

Even, Odd, None

1, 2

When you start the Computer , the RS-232-C is initialized to the following '' default
characteristics'':

Baud Rate

Word Length (bits)

Parity

Stop Bits

300

7

Even

In addition, the RS-232-C is initialized to wait for completion of character 1/0 before
returning . That is , if you attempt to receive a character, the Computer will wait
until a character is received; it will never return to you without a character.
Similarly , if you attempt to send a character, the Computer will wait until the
receiving device is able to accept the character.

To regain control of the Computer during a wait, hold (BREAK) until READY returns .

43

--... .. ii· TRS-80 MODEL Ill
- .· ..

1/0 to the RS-232-C Interface

If the default settings are correct, you are ready to begin serial 1/0. To change any of
the settings, you need to re-initialize the RS-232-C interface. See "To Change the
RS-232-C Characteristics'' .

There are two ROM subroutines for serial 1/0 (both were used in the simple terminal
program):

$RSTX
$RSRCV

Send a character
Receive a character

Both subroutines are simple to use from BASIC via the USR function.

To Send a Character

1. The Computer should be connected to the serial device.

2. Define a USR call to $RSTX (address 85) by executing these BASIC statements:

POKE 16526, 85
POKE 16527, 0

3. Send the character by storing the ASCII code in memory location 16880. Suppose
A$ contains the character. Then execute this statement:

POKE 16880, ASC(A$)

4. Make the USR call with a dummy argument:

X = USR(0)

If the Computer is using the Don ' t Wait procedure, then control will return to
BASIC even if the character was not sent. If the Computer is using the Wait
procedure, control will return to BASIC after the character is sent.

5. Repeat steps 3 and 4 until all the data has been sent.

To Receive a Character

1. The Computer should be connected to the serial device.

2. Define a USR call to $RSRCV (address 50) by executing these BASIC statements:

POKE 16526, 80
POKE 16527, 0

3. Get the character by making the USR call with a dummy argument. For example:

44

X = USR(0)

Upon return from the subroutine, USR returns the ASCII code of the character
received in memory location 16872. A zero indicates no value was received .

OPERATION

If the Computer is using the Don't Wait procedure, then control will return to BASIC

even if no character was received. If the Computer is using the Wait procedure,
control will return to BASIC after a character is received . Press (BREAK) to interrupt a
WAIT and regain keyboard control of the Computer.

4. To make this character available to BASIC, execute a BASIC statement like:

A$= CHR$(PEEK(16872))

which stores the string value in A$. Remember, if A$ = CHR$(0l, then no
character was received.

5. Repeat Steps 3 and 4 until you are through receiving data.

To Change the RS-232-C Characteristics

If the TRS-80' s default characteristics do not match the requirements of the other
device, you can change some or all of them by using(' 'calling") an initialization
subroutine that is stored in ROM.

Before calling $RS IN IT, you must store the desired characteristics in certain RAM

locations:

Address

16888

16889

16890

Contents

Transmit/Receive Baud Rate Code

Parity/Word Length/Stop Bit Code

Wait/Don' t-Wait Switch

Transmit/Receive Baud Rate Code

The TRS-80 RS-232-C allows you to receive and transmit at different rates. For most
applications, the rates will need to be the same.

Instead of storing the actual baud rate, you store a code for the value, taken from the
table below. You select the appropriate codes for send and receive rates , and then
''pack'' them into memory address 16888 as follows:

Send/Receive Code= (Send Code* 16) + Receive Code

For example , suppose we want to send and receive at 110 baud. Using the table on
the next page, we find that the code for I 10 baud is 2. So:

Send/Receive Code= (2 * 16) + 2 = 34

45

In technical terms , we are storing the send-rate code in the most significant four bits
(''nibble ' ') of 16888, and the receive-code in the least significant nibble.

Baud-Rate Codes

Desired Error Baud Rate

Baud Rate (%) Code

50 0 0
75 0

110 0 2
134.5 0.016 3
150 0 4
300 0 5
600 0 6

1200 0 7
1800 0 8
2000 0.253 9
2400 0 10
3600 0 11
4800 0 12
7200 0 13
9600 0 14

19200 3.125 15

Parity /Word Length/Stop-Bit Code

You pack all of this information into one byte, using the following formula:

Code = (Parityselect * 128) +(Word* 32) +(Stop* 16) + (Parityonoff* 8)
+ (Transmit * 4) + (DTR * 2) + RTS

where:

46

Parityselect = 0 for odd parity
= I for even parity

Word = 0 for 5-bit words
= I for 6-bit words
= 2 for 7-bit words
= 3 for 8-bit words

Stop = 0 for 1 stop-bit
= I for 2 stop-bit

Parityonoff = 0 to enable parity
= I to disable parity

Transmit = 0 to disable the transmitter
= 1 to enable the transmitter

DTR = 0 to set Data Terminal Ready signal low
= 1 to set Data Terminal Ready signal high

RTS = 0 to set Request to Send signal low
= 1 to set Request to Send signal high

OPERATION

For example, to select 7-bit words, even parity , two stop-bits, transmit-enable, DTR

high and RTS high, calculate the code this way:

Code = (1 * 12 8) + (2 * 3 2) + (1 * 16) + (0 * 8) + (1 * 4) + (1 * 2) + (1 * J) =
215

For additional information on how to determine the appropriate code
characteristics, read $RSINIT in the Technical Information Chapter and see
Appendix I .

Wait/Don't-Wait Switch

The TRS-80 lets you choose either Wait or Don't-Wait serial l/0.

When you select Wait 1/0, the TRS-80 wi II not return from a serial l/0 call until the
operation is successful (i.e., a character is transmitted or received). Pressing
(BREAK) will return control to your program.

When you select Don ' t-Wait 1/0, the TRS-80 wil I return from a serial 1/0 call even if
the operation was not successful (i.e., no character was transmitted or received).

The contents of memory location 16890 determines which procedure is used:

Contents of 16890

Zero

Non-Zero

Procedure Used

Don't-Wait

Wait

Note: To change RS-232-C Characteristics, you must do a CALL to $RSI NIT after
setting up RAM locations 16888-16890.

47

-- · TRS-80 MODEL Ill
- .. : ...

Calling $RSINIT from BASIC

Store (POKE) the desired values into the RS-232-C control addresses (16888-16890) . If
any of the default characteristics are already correct, leave those addresses
unchanged.

If you need to change the parity/word length/stop-bit code, see $RS IN IT in the
Technical Information chapter . Once you have calculated the desired codes for
baud rate, parity/word length/stop-bits and Wait/Don't-Wait. you are ready to call
$RSINJT.

Execute the following BASIC statements to define a USR call to $RSINIT :

POKE 16526, 90
POKE 16527, 0
X = USR(O)

When the last statement has been executed, the RS-232-C is initialized.

48

OPERATION

9 I Routing Input/Output

Model III lets you route 1/0 from one device to another. This gives your programs
more versatility.

For example, suppose you have a program that outputs to the Video Display. Now
suppose you want all display output to go to the printer. You can accomplish this
without changing the program at all, using the route capability. The source device
(in our example, the display) will then be logically equivalent to the destination
device (printer) until you re-initialize the 110 drivers with $INITI0 (described later).

Here are the devices that may be routed:

Device System Abbreviation

Keyboard KI

Display DO

Printer PR

RS-232-C
Send RO
Receive RI

49

. - .-..

To Route from One Device to

Another

Note: To actually try out the next four steps, you must have printer connected to
your Computer. If not, just read through the example.

I . Store the Source Device Abbreviation in memory locations 16930-16931. For
example , to store DO (display) as the source device, execute the BASIC

statements:

POKE 16930, ASC("D")
POKE 16931, ASC("O")

2. Store the Destination Device Abbreviation in memory locations 16928-16929. For
example , to store PR (printer) as the destination device, execute the BASIC

statements:

POKE 16928, ASC("P")
POKE 16929, ASC("R")

3. Set up a USR call to $ROUTE (address 108). For example, execute the BASIC

statements;

POKE 16526, 108
POKE 16527, 0

4. Make a USR call to $ROUTE with a dummy argument. For example, execute the
BASIC statements:

50

X = USR(0)

Upon completion of Step 4, the route is completed. Now everything you send to
the display will be sent to the printer instead.

OPERATION

Routing Multiple Devices

You can change two or more of the I/0 routes. To do this, you perform the routing
Steps 1 through 4 once for each change you wish to make. However, to get the
desired result, you must do the changes in the correct order! If you use one device
as the source of a route , you should not later on use the same device as a
destination . Here's why:

After you route device A to device B, device A is now logically equivalent to device
B. Therefore:

(1) Route A to B

(2) Route C to A

Does not allow C to output to device A. Output to C will actually transfer to B, just as
if you had executed these steps:

(1) Route A to B

(2) Route c to B

On the other hand:

(1) Route c to A

(2) Route A to B

Does allow device C to output to device A and device A to output to device B.

For example, suppose you want to route display output to the printer, and printer
output to the RS-232-C . Here ' s a diagram of what you want to accomplish:

Display
Output

Printer -----------/ O u t put

RS-232-C /
Output

Display output goes to the Printer, and Printer output goes to the RS-232-C. All other
I/0 routes are unchanged . Note that Display output does not get carried forward
from the Printer to the RS-232-C . To accomplish the routing pictured above, use this
sequence:

1. Route DO to PR

2. Route PR to RO

If you mistakenly do the steps in reverse order, you will get this result:

Display
Output -----~/

RS-232-C
Output

Printer

/Output

In this case , Display output is "carried forward" from the printer to the RS-232-C. It
does not output to the printer.

51

OPERATION

10 / Real-Time Clock

The Model III contains a real-time clock. It is always running, except during
cassette and disk 1/0 and during certain other operations.

The clock keeps the following information in memory:

Abbrev. Range of Values Memory Location

MO Month 01 - 12 16924

DA Day 01 - 31 16923

YR Year 00 - 99 16922

HR Hour 00 - 23 16921

MN Min. 00 - 59 16920

ss Sec. 00 - 59 16919

The clock includes the logic for 28. 30 and 31-day months. It does not recognize leap
years.

When you start the Computer, the clock is set to all zeroes:

00/00/00 00:00:00

To Set the Clock

Simply store the appropriate data in the memory addresses given above. You may
do this by running the following program:

10 DEFINT A·-Z
20 DIM TM(5)
30 CL.. ::::: 1692.t~
40 PRINT "INPUT 6 VALUES: MO, DA, YR, HR, MN, SS"
:::i0 INPUT TM (0) , TM (1) , TM (2) , TM (:3) , TM (4) , TM (5)
60 FOR I= 0 TO 5
70 POKE CL - I, TM(I)
80 NEXT I
90 PRINT "CLOCK IS SET"
100 END

53

To Read the Clock

The Model III includes a built-in BASIC function, TIME$, to get the time in a 17-byte
string. For example, execute the BASIC statement:

PRINT TIME$

To display the time.

To Display the Clock in Real-Time

You can turn on a continuously updated clock display. The current time (not the
date) will be displayed in columns 57 - 64, regardless of what mode the BASIC is in:
Immediate, Execute, Edit, or System. As long as the clock is running, it will be
updated on the display.

To enable the clock display, call the ROM subroutine $CLKON at address 664 . To
disable it, call the ROM subroutine $CLKOFF at 673.

The following BASIC program shows how to turn the display on and off. Each time
you want to switch it on or off, run the program.

Note: To calculate the most significant and least significant bytes of a decimal
number, use this formula:

MSB = integer portion of (number/256)
LSB = number - (MSB * 256)

For example, decimal address 661 can be broken down this way:

54

MSB = integer portion of (661/256) = 2
LSB = 661 -(2 * 256) = 152

Sample Program

5 GI....G
10 DEFINT A-·Z
20 EN :::: 152: DI :::: 1td 'L.SB OF $CL.KON/$CL.KOFF
30 PRINT "<E> NABI....E CLOCK DISPLAY"
40 PRINT "<D> ISABLE CLOCK DISPLAY"
~i0 INPUT /-\!f,
60 IF AS - "E" THEN SW - EN: GOTO 100
70 IF AS= "D" THEN SW - DI: GOTO 100
E.W'.I GOTO :m
100 POKE 16526, SW
110 POKE 16527, 2
1 2'2'.I X ::, U!:rn < 0)
130 END

., SET UP UBF< CALL
'MSB IS SAME FOR BOTH CAL.LS
'CALL USR SUBROUTINE

For further information about the real-time clock, see $CLKON and $CLKOFF in the
Technical Information chapter.

55

11 / Input/Output Initialization
Whenever you start or reset the Computer, the input/output routines (' '110 drivers'')
are initialized to their default values (as explained in the following chapters). For
example, the Video Display is initialized to have a blinking cursor.

As described in the previous chapters, there are ways for you to alter these default
characteristics via a BASIC or Z-80 program. Because of this feature, it is important
to have a means ofresetting the 1/0 drivers to their default conditions.

Model III has a ROM subroutine to re-initialize all 110 drivers to their default values.
We call it $INITIO.

The following BASIC program shows how to use $INITIO.

10 POKE 16526, 105
20 POKE l6~:i27, 0
3(2) X ::: USR < (2))

'LSB OF SINITIO ENTRY ADDRESS
'MBB
' CALL.. !f; IN I TI 0

Run this program whenever you want to restore the 1/0 drivers to their initial
characteristics.

57

12/Technical Information

This section is intended for Z-80 programmers and BASIC programmers who are
familiar with binary and hexadecimal arithmetic and hardware concepts like bit and
byte . Its purpose is to allow you to take full advantage of the Model Ill TRS-80.

If you want to understand and use the system on this level , but do not have the
background, we suggest you read:

TRS-80Assembly Language Programming
by William Barden, Jr.
Radio Shack Catalog Number 62-2006

This one book will get you off to a good start. It was written for the Model I TRS-80 ,

but almost all of it applies to the Model Ill as well.

To Protect High RAM

In many applications, you will want to interface a BASIC program and a Z-80

routine. In such cases, you need to protect enough high RAM to accommodate your
Z-80 routine . Otherwise , BASIC will use all RAM available for storage and execution
of the BASIC program.

Duri.ng the start-up dialog , you have the option of protecting high RAM via the
Memory Size Question. If you simply press (ENTER) to this question , BASIC will use
all available RAM .

To protect RAM, type in the' 'limit address" in decimal form , and then press
(ENTER). The limit address is the highest memory address you want BASIC to use.
Addresses above this value will not be affected by BASIC.

For example , if you type: 11
32667 (ENTER)", BASIC will not use any memory above

32667. It will use 32667 and all lower-numbered memory locations.

59

TRS-80 MODEL Ill

ROM Subroutines

The Model Ill BASIC ROM contains many subroutines that can be called by a Z-80

program; many of these can be called by a BASIC program via the USR function.
Each subroutine will be described in the format given below.

1. $NAME-Entry address

2. Function Summary

3. Description offunction

4. Entry Conditions

5. Exit Conditions

6. Sample Program

Notes:

1. The subroutine name is only for convenient reference . It is not recognized by the
Computer. The$- prefix reminds you that it is a convenience name only.

The entry address is given in decimal/hexadecimal form. (The hexadecimal address
will be given in this form: X'OOOO' .) This is the address you use in aZ-80CALL. BASIC
programmers store this address in the USR definition address (16526-16527).

4, 5. Entry and exit conditions are given for Z-80 programs. If a Z-80 register is not
mentioned here, then you can assume it is unchanged by the subroutine .

6. Sample Program fragments are given in Z-80 Assembly Language and, where
appropriate, in BASIC.

Here are the subroutines, arranged according to function. In the following pages,
they are arranged alphabetically.

60

System Control

$CLKON

$CLKOFF

$DATE

$DELAY

$INITIO

$READY

$RESET

$ROUTE

$SETCAS

$TIME

Cassette 1/0

$CSHIN

$CSIN

$CSOFF

$CSHWR

$CSOUT

Clock-display on
Clock-display off
Get today's date
Delay for a specified interval
Initialize all uo drivers
Jump to Model III "Ready"
Reset Computer
Change 1/0 device routing
Prompt user to set cassette baud rate
Get the time

Cassette on, search for leader and sync byte
Input a byte
Tum off cassette drive
Cassette on, Write leader and sync byte
Write a byte to cassette

Keyboard Input

$KBCHAR

$KBWAIT

$KBLINE

$KBBRK

Printer Output

$PRCHAR

$PRSCN

RS-232-C 1/0

$RSINIT

$RSRCV

$RSTX

Get a character if available
Wait for a character
Wait for a line
Check for (BREAK) key only

Print a character
Print entire screen contents

Initialization
Receive a character
Send a character

Video Display Output

$VDCHAR

$VDCLS

$VDLINE

Display a character
Clear the screen
Display a line

61

0(%'.1~1
L11il 2 P.
i21('!33
L11il :3B
(·111) / f('!
l1L:J,:,.</
k'li?l~'.1({)
i1Wl'.l
~' IZ\ ~, I,
il)li)6 1')

(')11)69
liilil6 C
Ul C:9
011)9
~11 F E\
l1:: lf!-

12r~~t:> 1 ..

fr1 2 B7
lL'. tlD
V1 ?'16
C'l 2'/H
V1 2 A1
:, ,;,')l,2
11\19
:,11:i:~
30:36
:'./EB

fllil lillil

TRS-80 MODEL Ill

ll('!(10l
["(%10 '. '
k)LMlil .\

Mu DU . Ji. J P<WI CJ\L L ,; •··· DE i'IONf,;T RA T I Ot✓ F'RO(if,MI

i·' l~lW\ii
L%X11il 'l
(1\"1C1W,

CHE h i f: 0 ff/ .'0/ / (-) C1

Uf'•Df\ ri':.l) liJ i / C'!U / Ui 'l

(l(1C107
L•JL1 (11i1H
[lOlilW:i

L'l111ilH1

10 DEM ONS TRATE , JUMF' TO THE APPRO PRI ATE ENTRY
PiJlN I . U\CH D[J,JO Ll'~O,i l✓l fH /\ ,JUMP 10 DA: d C ' ii f :/,U '/

(i)0lll 1 RHA. L•A'
001il1 2 KP.CHA N LUU
cm0 13 VDCHAR 1 ,;,u
lillilli.l:l ' • PRCffr\l~ E <.,!U
000 15 KBLINL L0U
0001 6 KBWAIT E0U
0001 / RSRC V L0U
cmcH H p,;n: LUU
00C11 'i' R~o I t,I l I L ,,,u
0002 11) DEL AY EOU
,mw::: 1 Jt~lTI O LG1U
00022 POUTE E0U
0002 3 VDCL S LOU
0m12 ,:, PR!3CM l:: !)U
00025 CSOEF E0U
lillillil26 VDLINE EOU
00021 CSIN EOU
00028 CSOU T LUU
00029 CSHWP EOU
lil00 :.l0 h l?.l',HI< c,,,t/
0003 1 CSHIN LOU
lillillilJ2 CLKON F0U
01illil33 CLKffiF LOU
0003 4 SET CAS EQU
lillillil :35 READY EOU
0(103 6 D1YfE [(.s1U

lillillil :37 lIME LOU
0003 8 PRSTAT LOU

tMi~l1H
LWJ.:ljli
lm:i J H
Vi il.UUl ·I
(1W,L1H
1/1(:ilf' / I I

vM<.,(1H
ttJ~'..I~) '--~ I 1
lilW_;/\H
lill1blilli
f'lil6'JH
lilLk,C11
(1J C'iH
lillD'? lt
l:1 lF 8H
l1?1P.H
~,1~·3~:!H
liJ2 6411
l'.)~·'B7 ~-I
L1.'Uf!I t
lL:'?6H
D?'IHH
0 '..:'tdH
~;il.14 '..:: H
1 Al 'i'lt
:m:<JH
::l L1J6H
37EBH

11)11)11) 3 9

L11ilW+0
0~1W1l

OPCi H000H

Note: This Z-80 assembly language listing is continued under the ROM call entries
for Sample Z-80 Programming.

62

$CLKOFF-673/X'02Al'

Disable the Clock Display

Entry Conditions

None

Exit Conditions

A is altered. All other registers are unchanged.

Sample Z-80 Programming

00042 rURN OFF CLOCK
f,iil\%1
130(1l

CUAJIL'.
C31'11(1

(1~)('\ifj

0(%111A

Sample BASIC Programming
100 POKE 16526,161: POhE 16527,2
110 X = USR<0l

$CLKON-664/X'0298'

Enable the Clock Display

Entry Conditions

None

Exit Conditions

CALL
.JI"

CLhOFf
l~EADY

'LE,B/MSE'-
'DUMMY AflGUMENl

A is altered. All other registers are unchanged.

Sample Z-80 Programming

B0k16
()(%19

CD9Bi2l2
C3191A

012)04~;
i2li2li2l46
012)047

TUflN ON CLOCK
CALL CLh:ON
LTP HEADY

Sample BASIC Programming

100 POKE 16526,152: PC~E 16527,2
110 X = USl~(L1)

'L.E.~8/Mf\B
'DUMMY AHGUMENT

OPERATION

63

---.-.--~----- TRS-80 MODEL Ill
- •·.

$CS HIN - 662/X '0296'

Search for Cassette Header and Sync Byte

Each cassette ''record'' begins with a header consisting of a leader sequence and
synchronization byte . $CSHIN turns on the cassette drive and begins searching for
this header information. The subroutine returns to the calling program after the
sync-byte has been read.

Entry Conditions

None

Exit Conditions

A is altered . All other regi sters are unchanged .

Sample Z-80 Programming

The following program reads the tape created by the $CSHWR sample program.

FJIZllZlC
EMIZlF
81Zl11
8 1Zl]L1
81Zl1 7
801 A
Fl01D
8021Zl
[J023
ci,126
8 12)29
B0:? A
Hl2l 28
fI1il2D
812L'.:'.F
El\~32
Hl2l3:\
8038
8038
flf2)61
812)62

64

CDC9 f2l 1
:lEl2lD
CDTll2ll2l
CDL1'.:C:3f2l
~'.13Bi312l
CD1 Bf2l;,
CD490iZl
2 16280
CD960'.?
CD3:i 0 2
Tl
'.?3
FEIZlD
2 0F7
CDF81Zl1
216:ZBII)
CD1BIZl2
C3 191A
50
0 [)

1Zl0f2l48 ; READ A ME SSAGE FROM TAPE & SlOP ON CAR- REl'N
1Zl01Zl49 CALL VDCLS CLEAR SCREEN
012lf2l 51Zl LD A, IZlDH
111Zl lZJ:j 1 CAl_L VD CHAR SI, IP A L. I ~W
12)01/)~)2
IZ)f2)1Z) '.)3
l/)l/)f2)5Lf
f2)1Z)f2) 55
1/)12)12) '.';6
12)12)12)57
00058 LOOP
f2)f2)f2) 5't
1/)12)12)6 12)
f2)1Z)l2) 61
12)12)12)6'.?
12)12)1/163
f2)1Z)f2)6 L1
1/)12)1/165
l/lf2)f2)66
1Zll2lf2l67 MSG0
12)1Z)f2)68
12ll2liZl69 TXT

CAL L
LD
CAL.L
CALL
L.D
CAL.L
CA L. L.
LO
INC
CP
LT R
CALL
LD
CALL
clP

DEFM
DEF8
DEFS

SET CA~;
HL., M'.3GII)
VDL.INE
hB WAIT
HL. ,TXT
CSHIN

(HLi ,A
HL.
0DH
NZ,L.OOP
CSOFF
HL.,TXT
VDL INE
READY

L ET Uf,ER '.,ELECT BI\UD RA-I E
(HL)~CASSE rn~ PROMPT

WA IT FOR ANY f\EY
IHLi=::?5 6-BYTE Bl ~FER
FI ND START OF RECORD
INPUT A BYTE
S T ORE IT
POINT TO NXT LOC.
WAS LAST BYTE =CAR -RET' N?
IF NO, GE T NXT BYTE
IF YES, TURN OFF CASSETTE
DI SPLAY THE MESSAGE

AND (i'U I T
'P REPARE TAPE TO PLAY AND PRESS ANY KEY '
!llDH
25 6 STO RAGE FOR TAPED MESSAGEE

OPERATION

$CSIN - 565/X '0235'

Input a Byte

After completion of $CS HIN, use $CSIN to begin inputting data, one byte at a time .

Note: You must call $CSIN often enough to keep up with the baud rate (either 500 or
1500 baud).

Entry Conditions

None

Exit Conditions

A = Data byte

Sample Z-80 Programming

See$CSHIN .

$CSHWR- 647 /X '0287'

Write Leader and Sync Byte

Each cassette ''record'' begins with a header consisting of a leader sequence and a
synchronization byte. $CSHWR turns on the cassette and writes out this header.

Entry Conditions

None

Exit Conditions

A is altered.

65

Sample Z-80 Programming
00070 ;JNPUl A KEYBOARD MESSAGE AND WRITE JT TO CASSETTE

Ulh:?
E)l6 ' ,
Ul67
F:16A
Hl6D
Ul!C'.l
FJ173
i:J 17'.::,
131/U
B17A
B17C
E: 17F
HlB?
BlB~\
DlHB
U1BP.
UlHE
Cl '11
B 19~~
B193
Dl'!6
E>.19C
f:l19A
Ul9D
131 A(ZJ
81P.2
D1B3
H1E9
BlEA

CDC'i'l;11
:iF0D
CD3300
:::: 1 A0El 1
CDlf'.1112
'.? 1 EABl
lt16FF
CDLf000
3HEB
3E0D
CD:3300
C!Vf;·:m
?lB:lill
CDlP,02
CD1+9111C'.)
CDB702
?1EAH1
7E

00071 CALL VDCLS
00072 LOOP! LD A,0DH CARRIAGE RETUHN
00073 CALL VD CHAR SKIP Tu NEXT DISPLAY E!NE

PROMPT MESf;SMiE

:;:::,

l''Ei2lD
20F7
CDFB01
Cl191A
5'+
0D
4D
II)[)

0007 1f
C11iml'1
00076
0007/
01107B
01i)ff7'?
000El0
000B1
000EC
000B3
i2HZJ0E>.Lf
00005
000B6
00Wl7
000BB LOOP2
00009
0111190
00091
00092
00093
00094
00095 M:3Gl
00096
00097 M:3G:'
00098
00099 TXTl

For a program to read the tape in, see $CS HIN.

$CSOFF-504/X'0lF8'

Turn Off Cassette

LD
CALL
LD
LD
CALL
,rn
LD
CALL
CALL
LD
CALL
C1\LL
CALL
LD
LD
INC
CALL
CP

ct,LL
JP
DEFM
DEFB
DEFM
DEFE,,
DEFS

HL, Mf,Gl
'-JDL I NF
HL,TXTl
B, 25:)
f<BL I Nl
C,LOOPl
A,0DH
VDCHAH
\::FTCAS
HL, M':OG:'
',JL>L I NF
hBWAIT
CSH~JR
HL,TXTl
A, (HL)
HL
C'.'30UT
0DH
NZ,LOOP:?

READY

DISPL/W IT
256-P,YTE BUFFER
MAX OF 255 CHARACTERS
GET A LINE FROM KB
LOOP IF <BREAh) WAS PRESSED

ShIP A LINE
LET USER SELECl BAUD HATE
CA!3:3ETTE PFWMPT

WAIT UNTIL A hEY IS PRESSED
WRITE CASSETTE HEADER

1\=A~;CI I P.YTE
POINT TO NEXf BYTE
WRITE LAST BYTE TO TAPE
WAS IT A CARRIAGE RETURN 7

IE NO, THEN GET NEXT P.YTE
IF YES, TURN OFF CASSETTE

'TYPE IN A MESSSAGF'
0DH
'ME~3SAGE STORED. PRESS ANY KEY WHEN READY TO RECO
0DH END OF LINE
'.2'16

After writing data to cassette, call this subroutine to turn off the cassette drive.

Entry Conditions

None

Exit Conditions

None

Sample Z-80 Programming

See $CSHWR.

66

OPERATION

$CSOUT-612/X'0264'

Output a Byte to Cassette

After writing the header with $CSHWR, use $CSOUT to write the data, one byte at a
time.

Note: You must call $CSOUT often enough to keep up with the baud rate (either 500
or 1500 baud).

Entry Conditions

A= Data byte.

Exit Conditions

None

Sample Z-80 Programming

See$CSHWR.

$D ATE-12339/X '3033'

Get Today's Date

Entry Conditions

(HL) = Eight-byte output buffer

Exit Conditions

(HL) = Date in this format:

MO/DA/YR

All other registers are altered.

Sample Z-80 Programming
17Jf2)111)(2)

82EA 21 llll3133 1/llll llll 1
E12ED CD3331/l IZJIZJ 111)2
82Flll 21FF82 ll)IZJ 111)3
B2F3 CD3630 IZJIZJ104

GET TODAY'S
LO
CALL
LD
CALL.

DATE & TIME
HL,TXT2 B--BYTE
DATE
HL,TXT3 8-BYTE
TIME

BUFFER

BUFFER

B2F6 21FFB;: 11)11)111)5 LD HL,TXT3 (HU =TIME/DATE MSG.
B2F9 CD1BIZJ2 IZJIZJ106 CALL. VOL.INF DISPLAY TIME/DATE
82FC C3191A IZJIZJ11ZJ7 JP READY
t32FF IZJIZJ 1 IZJB TXT3 DEFS 8 TIME GOES HEFlE
B31ZJ7 20 ll)IZJ11/l9 DEFB 21/lH ASCII SPACE
B31ZJ8 IZJIZJ111ZJ TXT2 DEFS 8 DATE GOES HEFlE
t3311ZJ 1/lD IZJII) 111 DEFB IZJDH END OF LINE

67

TRS-80 MODEL Ill

$DELAY-96/X'0060'

Delay for a Specified Interval

This is a general-purpose routine to be used whenever you want to pause before
continuing with a program.

Entry Conditions

BC = Delay multiplier. Actual delay will be:
2.46 + (14.8*BC)microseconds

When BC= 0000, 65536 is used. This is the
maximum delay (about one second) .

Exit Conditions

BC and A are altered.

Sample Z-80 Programming

00 11 2 ;SHOW Al l DISPLAY CHARACTERS , WITH DELAY AFTER EACH
3 E:i,0
E(l l 1
f3 3 l. '+
EU l 7
8 3 19
s :11 C
83 1F
E.:J2IZI
BJ:'..:' 1
El::l24
832~j
83::C:6
B327
s :129

CD6900
CD C901
3E00
1111 FF 7F
3220 3E
FS
cs
CD6000
Cl
Fl
3C
20F3
C31 9 1A

00113 CENTER E<~U 3E20H HOW B, COLUMN 3:2 OF VIDEO
00114 CALL INITIO RESTORE AL L 1/0 DRIVE RS
001 15 CALL VD CLS FIRST CLEAR SC REEN
0011 6 LD A,0H
111011 7 LD BC , 7FFFH
0011 8 LOO P3 LD CCENTERJ , A
0011 9 PUSH AF
00120 PUSH BC
00121 CALL DEL.A V
001 22 POP BC
001 23 PO P AF
001 2 4 INC A
001 25 JR NZ , LOO P3
001 26 J P READY

SET 1/2- SEC DEL AY FACTOR
WRITE CHARACTER TO VIDEO
SAVE LAST CHA R. CODE
AND DELAY FA CTOR

NE XT CHAR CODE
I F NOT ZERO , DISPLAY I T
EL SE END

$INITIO-105/X'0069'

Initialize All 1/0 Drivers

Call $INITIO to restore all I/O drivers to their initial default conditions, including 1/0

routes.

Entry Conditions

None

Exit Conditions

All registers are altered.

68

Sample Z-80 Programming

See $DELAY .

Sample BASIC Programming

10 POKE 16526,105: PC*E 16527,0
:?0 X 0 , UbH(Q))

$KBCHAR- 43/X '002B'

'LS B/1'1:,B
' DUMMY A HCilJMEI\I I

Get a Keyboard Character if Available

OPERATION

This subroutine checks the keyboard for a character . The character (if any) is not
displayed.

Entry Conditions

None

Exit Conditions

A = ASCII Character. IF A = O, no character was available.

DE is altered.

Sample Z-80 Programming

See $RSINIT.

69

$KB LINE - 64/X '0040'

Wait for a Line from the Keyboard

This routine gets a full line from the Keyboard. The line is terminated by a carriage
return (X'OD') or (BREAK) (X'Ol '). Characters typed are echoed to the display.

Entry Conditions

B = Maximum length of line. When this many characters are typed,
no more will be allowed except for (ENTER) or (BREAK)

(HL) = Storage buffer. Length should be B + I.

Exit Conditions

c Status = (BREAK) was the terminator.

B = Number of characters entered.

(HL) = Line from keyboard, followed by terminating character.

DE is altered.

Sample Z-80 Programming

See$CSHWR.

$KBWAIT-73/X'0049'

Wait for a Keyboard Character

This routine scans the keyboard until a key is pressed. If (BREAK) is pressed, it will
be returned in A like any other key. The character typed is not echoed to the
Display.

Entry Conditions

None

70

Exit Conditions

A = Keyboard character

DE is altered.

Sample Z-80 Programming

See $CSHWR .

$KBBRK-653/X'028D'

Check for (BREAK) Key Only

OPERATION

This is a fast key scan for the (BREAK) key only . Use it when you want to minimize
keyboard scan time without totally locking out the keyboard.

Entry Conditions

None

Exit Conditions

NZ Status = (BREAK) was pressed

A is altered.

71

-...._ .. iii TRS-80 MODEL Ill
. - .-..

$PRCHAR-59/X'003B'

Output a Character to the Printer

$PRCHAR waits until the Printer is available or until (BREAK) is pressed. If (BREAK) is
pressed , $PRCHAR returns to caller.

Entry Conditions

A = ASCII character

Exit Conditions

DE is altered.

Sample Z-80 Programming

00148 ; PRINTER DEMO
8356 216583 00149 LD HL.,TXT4 <HLi =SAMPL.E TEXT

GET CHAR. IN TO A
POINT TO NEXT CHAR
PRINT CHAR IN A

8359 7E 00150 LOOPS L.D
83'jA 23 00151
B35B CD3B00 00152
835E FE0D 001~j3
8360 20F7 00154
f.3362 Cl1911\ 00155
E!365 54 00156
fl382 fllD 00157
L102D 001~i8
00000 ASSEMBLY ERRORS

$PRSCN-473/X'01D9'

Print Entire Screen Contents

IN C
CALL
CP
JR
JP
DEFM
DEFB
END

A, (I-IL)
HL
PRCHAR
0D1-1 WAS I T A CARRI AGE RETURN ?
NZ,L.OOPS IF NO, GET NEx-1 CHAR.
READY IF YES, QU IT
'THI S SENTENCE WILL BE PRINTED'
12l DH

This routine copies all 1024 characters from the screen to the printer. If the printer is
unavailable , it waits until the printer becomes available . If (BREAK) is pressed,
$PRSCN returns to the caller.

Entry Conditions

None

Exit Conditions

All registers are altered.

72

OPERATION

$READY-6681/X'1Al9'

Jump to Model III BASIC "Ready"

To exit from a machine-language program into BASIC 's immediate mode , jump to
$READY (don't call it).

Entry Conditions

None

Exit Conditions

None

Sample Z-80 Programming

See $CSHIN.

$RESET-0/X'0000'

Jump to RESET

Jump to this address to re-initialize the entire system starting at the' 'Cass?' '
prompt. If a di sk controller is present, the Computer will attempt to load TRSDOS.
To prevent this from happening, the operator must hold down (BREAK) before this
jump is executed .

Entry Conditions

None

Exit Conditions

None

73

. - .·.

$ROUTE-108/X'006C'

Change 1/0 Device Routing

Entry Conditions

(X'4222') = Two-byte source device ASCII abbreviation: {KLDO,RI,RO,PR}

(X'4220') = Two-byte destination device ASCII abbreviation. Sarne set as above.

Exit Conditions

DE is altered.

Sample Programming.

See Chapter 9.

74

OPERATION

$RSINIT-90/X'005A'

Initialize the RS-232-C Interface

When you start the Computer, the RS-232-C interface is initialized to the
following characteristics:

Send/Receive Baud Rate: 300
Word length: 8
Parity: None
Stop-Bits: One
Wait for completion of character 1/0

To change any of these, you must call $RSINIT.

Entry Conditions

(16888) = Send/Receive Baud Rate Code:
Most significant four bits = send rate
Least significant four bits = receive rate
See the table of baud rate codes in Chapter 8.

(16890) = Wait/Don't Wait Switch
Zero= "Don't Wait"
Non-Zero= "Wait"

(16889) = RS-232-C Characteristics Switch:

Bits

7

5,6

5

4

Meaning

Parity:
1 = Even
0=Odd

Word Length:
00 = 5 Bits
01 = 6 Bits
10 = 7 Bits
11 = 8 Bits

Stop Bits:
0 = 1 Bit
1 = 2 Bits

Parity On/Off
0 = Parity
1 = No Parity

Bits

3

2

1

Meaning

Transmit On/Off.
0 = Disable
1 = Enable

Data Terminal Ready
0=No
1 = Yes

Request To Send
0=No
1 = Yes

75

-1ii TRS-80 MODEL Ill

'

Exit Conditions

DE is altered.

Sample Z-80 Program

11)12)1 27
(1)~)1 28
iim L:9

TERMINAL PROGRAM FOR DEMO OF RS-23 2-C CALLS, SKBCHAR AND SVDC HAI

ASSUME 16888 & 16889 CONTAIN THE PROPE R INITIALIZATION VALUES
12l1Zll 3 1Zl

iB2C AF 11)12)1 3 1 XOR A
83:2D 32FA41 11)(1)1 ~32 LD (168912)) , A
E:)3311! CDSAl2ll2l 12)12)133 CALL RSINIT
i3333 CD C912l1 12)12)1 34 CAU_ VDCLS
B336 CD28012) 12)(Zl1 3~i f{EY IN CALL fS:BCHAR
8339 FEl2ll2l 1/)11)136 CP (I)

8338 2812)6 12)12)1 37 cTR Z,RSIN
833D CD331/l!IJ 12)12)1 38 CAU_ VDCHAR
B3L112) CD~i5 12ll2l 12)12)1 39 CALL RSTX
B343 21E841 11)12)140 RS IN LD HL,1 6ff72
tJ:3 46 CD512l0!1J f/'.lf/'.1141 CALL RSRCV
B'.3'+9 7E 12)0142 U} A, <HU
i:<34A FEfZIIZl f/'.111)143 CP 12)

834 C 2BEB 12)12)144 ,JR Z,KEYIN
fl3L1E CD330fZI f/'.112)145 CALL VDCHAR
B35 1 18[3 12)12)146 JR KEVIN
~U53 C3 19 1A 12)11)14 7 JP READY

$RSRCV - 80/X '0050'

Receive a Character from the RS-232-C Inter(ace

ZERO A TO SELECT 'DON 'T WAI T '

CHE Cf, fS: EYBOARD

IF NOTHING, CHECK RS232
t=;ELF ·--ECHO
SEND IT TO RS232
IHLl ~CHAR.INPUT BUFFER
CHE CK FOR RS232 IN PUT
GET BUFFER CONTENTS

IF NOTHING, CHECK KB
ELSE DISPLAY IT
CHECK hB
RE TURN TO BASIC

If RS-232-C Wait is enabled, this routine waits for a character to be recei ved, or until
(BREAK) is pressed.

If Wait is not enabled, it returns whether or not a character is received .

Entry Conditions

None

Exit Conditions

(16872) = Character received . Zero indicates no character.

DE is altered .

Sample Z-80 Programming

See $RSINIT.

76

-
OPERATION

$RSTX-85/X'0055'

Transmit a Character to the RS-232-C Interface

If RS-232-C Wait is enabled , this routine waits until the character is transmitted or
until (BREAK) is pressed .

If Wait is not enabled , it returns whetheror not a character is transmitted .

Entry Conditions

A = Character or
(16880) = Character

Exit Conditions

NZ Status or (16880) = 0 if no character was sent.

DE is altered.

Sample Z-80 Programming
See $RSINIT.

$SE TC AS -12354/X '3042'

Prompt User to Set Cassette Baud Rate

This call repeats the first question in the Model III start-up dialog. It displays the
prompt:

Cass?

on the next line of the display, and waits for the operator to type "H" (high-1500
baud) or "L" (low-500) or (ENTER) (default to high).

Upon return from the call , the cassette rate is set accordingly.

Entry Conditions

None

Exit Conditions

All registers are altered.

Sample Z-80 Programming

See$CSHWR.

77

$TIME-12342/X '3036'
Get the Time

Entry Conditions

(HL) = Eight-byte output buffer

Exit Conditions

(HL) = Time in this format:
HR:MN :SS

All other registers are altered .

Sample Z-80 Programming

See$DATE.

$VDCHAR -51/X '0033'

Display a Character

This subroutine displays a character at the current cursor location.

Entry Conditions

A = ASCII character

Exit Conditions

DE is altered .

Sample Z-80 Programming

See$DELAY.

78

$VDCLS-457/X'01C9'

Clear the Video Display Screen

Entry Conditions

None

Exit Conditions

All registers are altered.

Sample Z-80 Program
See$CSHWR.

$VDLINE-539/X'021B'

Display a Line

OPERATION

This subroutine displays a line. The line must be terminated with an ASCII ETX

(X'03 ') or carriage return (X 'OD') . If the terminator is a carriage return, it will be
printed; if it is an ETX, it will not be printed. This allows VD LINE to position the
cursor to the beginning of the next line or leave it at the position after the last text
character.

Entry Conditions

(HL) = Output text, terminated by X'03 ' or X'OD'.

Exit Conditions

(HL) = First character after the terminator.

DE is altered.

Sample Z-80 Programming
See $CSHWR .

79

-11111 TRS-80 MODEL Ill
- .· ...

(BREAK) Processing

The (BREAK) key is intercepted during keyboard scan operations. The Computer
transfers control to a three-byte jump vector in RAM (hex values: C3 lsb msb). For
special applications, you may change the jump vector addresses to allow your own
program to handle the (BREAK) key.

The keyscan (BREAK) jump vector is located at 16396 (X ' 400C').

Register contents on entry to the jump vector

DE= Modified by the Computer

(SP)= The return address of the interrupted program. That is, a RET will transfer
control to the point at which the program was interrupted .

Sample BASIC Programming

Run this BASIC program to disable (BREAK).

10 PC*E 16 3 96,1 75 ' 17 5 Z- 8 0 " XOR A" CODE
2 0 POKE 16397 , 2 01 ' 20 1 = Z-80 "RET" CODE

Run this BASIC program to enable the (BREAK) key.

10 PW\E 16396, 2 01 ' Z -80 "f<ET" CODE

80

OPERATION

Memory Map

Decimal Contents I Hexadecimal I
Address ' Address I

0 12 KROM ! 0
Model Ill BASIC I

' 12288 2 KROM 3000
for System Use

14336 Keyboard 3800
Matrix

15360 Memory-Mapped 3C00
Video Display:

Upper left corner =
15360 + 0.

Lower right corner =
15360 + 1023.

16384 Reserved 4000
for System Use

17385 User Memory 43E9
For Program and Data

32767 " 16K RAM" ends here. 7FFF
49151 "32K RAM" ends here. BFFF
65535 "48K RAM " ends here. FFFF

81

-- TRS-80 MODEL Ill
. -

Summary of Important ROM Addresses

Address
Dec Hex Contents Function
0 0000 $RESET System reset

43 0028 $KBCHAR Check for keyboard character

51 0033 $VDCHAR Display a character

59 0038 $PACHAR Print a character

64 0040 $KBLINE Wait for a keyboard line

73 0049 $KBWAIT Wait for a keyboard character

80 0050 $RSRCV Receive character from RS-232-C

85 0055 $RSTX Transmit character to RS-232-C

90 005A $RSINIT Initialize RS-232-C

96 0060 $DELAY Delay for a specified time

105 0069 $INITIO Initialize all I/O drivers

108 006C $ROUTE Route 1/0

457 01C9 $VDCLS Clear the screen

473 0109 $PRSCN Print screen contents

504 01F8 $CSOFF Turn off cassette
539 0218 $VDLINE Display a line

565 0235 $CSIN Input a cassette byte

612 0264 $CSOUT Output a cassette byte

647 0287 $CSHWR Write the cassette header

653 0280 $KBBRK Check for (BREAK) key only

662 0296 $CSHIN Read the cassette header

664 0298 $CLKON Turn on the clock display

673 02A1 $CLKOFF Turn off the clock display

6681 1A19 $READY Jump to BASIC "Ready"

12339 3033 $DATE Get the date

12342 3036 $TIME Get the time

12354 3042 $SETCAS Set cassette baud rate

14312 37E8 $PRSTAT Printer status

(Read Only)

"Go" only if:

Bit? = 0 "NOT BUSY"

Bit6 = 0 "NOT OUT OF PAPER"

Bit5 = 1 "DEVICE SELECT"

Bit4 = 1 "NOT PRINTER FAULT"

Bits 3,2, 1 and Oare not used.

82

OPERATION

Summary of Important RAM Addresses

Address Initial
Dec Hex Contents Contents
16396 400C (BREAK) Jump Vector C9xxxx

Keyboard scan operations
Three bytes

16409 4019 Caps Lock Switch "Caps"
0 = "Upper and Lower Case"
Not 0 = "Caps Only"

16412 401C Cursor Blink Switch "Blink"
0 = "Blink"
Non-Zero = " No-Blink"

16416 4020 Cursor Address N/A
Two bytes: LSB, MSB

16419 4023 Cursor Character 176
ASCII Code 32- 255

16424 4028 Maximum Lines/Page 67
plus one

16425 4029 Number of lines printed 1
plus one

16427 4028 Line Printer Max. Line " No Max"
length less two.
255 = "No Maximum"

16872 41E8 $RSRCV Input Buffer 0
One byte

16880 41F0 $RSTX Output Buffer 0
One byte

16888 41F8 $RSINIT Baud Rate Code 85
TX Code = Most Sig. Nibble
RCV Code = Least Sig. Nibble

16889 41F9 $RSINIT Parity/Word Length/ 108
Stop-Bit Code

16890 41FA $RSINITWAIT Switch "Wait"
0 = "Don't Wait"
Non-Zero = "Wait"

16913 4211 Cassette Baud Rate Switch N/A
0= 500Baud
Non-Zero = 1500 Baud

83.

-- TRS-80 MODEL Ill
- .-..

Address Initial
Dec Hex Contents Contents

16916 4214 Video Display Scroll Protect 0
From Oto 7. Greater values
are interpreted in modulo 8

16919 4217 Time-Date 00:00:00
Six binary bytes: 00/00/00
SSMM HHYYDD MM

16928 4220 $ROUTE Destination Device NIA
Two-byte 1/0 designator

16930 4222 $ROUTE Source Device N/A
Two-byte 1/0 designator

84

OPERATION

13 / Troubleshooting And
Maintenance
If you have problems operating your TRS-80, please check the following table of
symptoms and cures. It's also possible that you have not followed the instructions
correctly.

If you can't solve the problem, take the unit in to your local Radio Shack. We'll
have it fixed and returned to you ASAP!

Symptom

The Cass? message does not appear
when you turn on the Computer.

Possible Cause. Cure.

I. No AC power. Check power cord
connection to Computer and all
peripherals.

2. Incorrect power-up sequence.

3. Peripheral device (e.g., printer) is
not connected properly. Recheck
connection.

4. Disk system. To operate without a
TRSDOS diskette, hold down (BREAK)
while you reset or power on.

5. Video Display needs adjustment.
Check Brightness and Contrast
controls.

85

' - .,,

86

Symptom

Can't get a cassette program to
load.

Computer "hangs up" during
normal operation, requiring reset
or power-off/on

Possible Cause. Cure.

I . Improper cassette connection.
Check connection instructions in
cassette owner 's manual.

2 . Cassette load speed does not match
the speed of the recorded tape . Model I
Level II BASIC programs are always
Low (500 baud) . Model III programs
may be either High (1500) or Low.

3. Incorrect volume setting. Try
another volume setting.

4. Information on tape may have been
garbled due to static electricity
discharge, magnetic field, or tape
deterioration. Try to load duplicate
copy , if available .

I . Fluctuations in the AC power
supply . See AC Power Sources, below.

2 . Defective or improperly installed
connector. Check all connection
cables to see that they are securely
attached and that they are not frayed or
broken.

3. Programming. Re-check the
program .

OPERATION

AC Power Sources

Computers are sensitive to fluctuations in the power supply at the wall socket. This
is rarely a problem unless you are operating in the vicinity of heavy electrical
machinery. The power source may also be unstable if some appliance or office
machine in the vicinity has a defective switch which arcs when turned on or off.

Your Model III TRS-80 is equipped with a specially designed , built-in AC line filter.
It should eliminate the effects of ordinary power-line fluctuations.

However, if the fluctuations are severe, you may need to take some or all of the
following steps:

• Install bypass or isolation devices in the problem-causing devices
• Fix or replace any defective (arcing) switches
• Install a separate power-line for the Computer
• Install a special line filter designed for computers and other sensitive electronic

equipment

Power line problems are rare and many times can be prevented by proper choice of
installation location . The more complex the system and the more serious the
application, the more consideration you should give to providing an ideal power
source for your Computer.

Maintenance

Your Computer requires little maintenance. It' s a good idea to keep it clean and free
of dust build-up. This is especially important for the keyboard. Radio Shack sells a
custom-designed Model III dust cover you may find helpful.

If you need to clean the Computer case, use a damp , lint-free cloth.

The peripheral devices (cassette recorder , line printer, etc .) may require more
maintenance. Check the owner's manual for each peripheral in your system .

87

14 / Specifications
AC Power Supply

OPERATION

This applies to non-disk systems only . For disk systems, see the Disk System
Owner 's Manual.

Power Requirements 105 130 VAC, 60 Hz

Current Drain

(240 V AC, 50 Hz Australian)
(220 V AC, 50 Hz European)

0. 83 Amps RMS

Microprocessor

Type Z-80
2.02752MHz Clock Rate

RS-232-C Interface

Standard
RS-232-C Signal
PG Protective Ground
TD Transmit Data
RD Receive Data
RTS Request To Send
CTS Clear To Send
DSR Data Set Ready
SG Signal Ground
CD Carrier Detect
DTR Data Terminal Ready
RI Ring Indicator
STD* Secondary Transmit Data
SUN* Secondary Unassigned
SRTS* Secondary Request To Send

Pin#
1
2
3
4
5
6
7
8
20
22
14
18
19

*Note: These signals are not used for the secondary functions, but are reserved for
future use .

89

RS-232-C Pin Location

Looking from the outside at the RS-232-C jack on the Model Ill Computer:

1 2 3 4 5 6 7 8 9 1011 12 13

Parallel Printer Interface

Signal Function
STROBE* 1 .5 µS pulse to clock the data from

processor to printer

DATA0 Bit O (lsb) of output data byte

DATA1 Bit 1 of output data byte

DATA2 Bit 2 of output data byte

DATA3 Bit 3 of output data byte

DATA4 Bit 4 of output data byte

DATA5 Bit 5 of output data byte

DATA6 Bit 6 of output data byte

DATA? Bit 7 (msb) of output data byte

BUSY Input to Computer from Printer, high
indicates busy

PAPER lnputto Computer from Printer, high

EMPTY 1ndicates no paper- if Printer doesn't
provide this, signal is forced low

SELECT lnputto Computer from Printer, high
indicates device selected

FAULT* Input to Computer from Printer, low
indicates fault (paper empty, light
detect, deselect, etc.)

GROUND Common signal ground

NC Not connected or not used

*These signals are active-low.

90

Pin#
1

3

5

7

9

11

13

15

17

21

23

25

28

2,4,6,8,10
12, 14, 16, 18,
20,22,24,27,
31,33,34

26,29,30,32

OPERATION

Printer Pin Location
Looking from the bottom rear at the printer card-edge connector as in Figure I on 6.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 C~=~=~= = : = = = : = = = : = : = I 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Cassette Interface

Suggested Input Level for Playback
from Recorder

Typical Computer Output Level to
Recorder

Remote On/Off Switching
Capability

Cassette Jack Pin Location

1 to 5 Volts peak-to-peak at a
minimum impedance of 220 Ohms

800 m V peak-to-peak at 1 K Ohm

0.5 A maximum at 6 VDC

Looking at the outside of the cassette jack on the Computer:

2

3

1. Remote Control
2. Signal Ground
3. Remote Control
4. Input from Recorder's Earphone Jack
5. Output to Recorder's Aux or Mic Jack

91

BASIC

15 / BASIC Concepts
This chapter gives an in-depth description qfhow to use thefull powerofModel III
BASIC. Programmers require this information in order to build powerful and
efficient programs. However, if you are still something ofa novice, you might want
to skip this chapter for now, keeping in mind that the information is here when you
need it.

This chapter is divided into four sections:

1. Overview-Elements of a Program. This section defines many of the terms
we will be using in the chapter.

2. How BASIC Handles Data. Here we discuss how BASIC classifies and stores
data. This will show you how to get BASIC to store your data in its most efficient
format.

3. How BASIC Manipulates Data. This will give you an overview of all the
different operators and functions you can use to manipulate and test your data.

4. How to Construct an Expression. Understanding this topic will help you form
powerful statements instead of using many short ones.

95

- .· ..

Overview - Elements of a
Program
This overview defines the elements of a program:

The program itself, which consists of .. .
Statements, which may consist of .. .

Expressions
We will refer to these terms during the rest of this chapter.

Program
A program is made up of one or more numbered lines. Each line contains one or
more BASIC statements. BASIC allows line numbers from Oto 65529 inclusive. You
may include up to 255* characters per line, including the line number. You may
also have two or more statements to a line, separated by colons .

*You can only type in 240 characters for new lines; using the Edit Mode, you can
add the extra 15 characters.

Here is a sample program:

Line BASIC Colon between __,,.,,,-- BASIC statement

n~mb~ ~statements ~:___--------
100 CLS: PRINT "NORMAL MODE ... "
110 PRINT "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
120 FOR I= 1 TO 1000: NEXT I
130 CLS: PRINT CHR$(23); "DOUBLE-SIZE MODE ... "
140 PRINT "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
150 END

When BASIC executes a program, it handles the statements one at a time, starting at
the first and proceeding to the last. Some statements, such as GOTO, ON . . . GOTO,

GOSUB, change this sequence.

96

BASIC

Statements

A statement is a complete instruction to BASIC, telling the Computer to perform
specific operations. For example:

GOTO100

Tells the Computer to perform the operations of (1) locating line 100 and (2)
executing the statement on that line .

END

Tells the Computer to perform the operation of ending execution of the program.

Many statements instruct the computer to perform operations with data . For
example , in the statement:

PRINT "SEPTEMBER REPORT"

the data is SEPTEMBER REPORT. The statement instructs the Computer to print the
data inside the quotes.

Expressions

An expression is actually a general term for data. There are four types of
expressions:

1. Numeric expressions, which are composed of numeric data . Examples:

(1 + 5.2) / 3
D
5*8
3.7682
ABS(X) + RND(0)
SIN(3 + E)

2. String expressions, which are composed of character data. Examples:

A$
"STRING"
"STRING" + "DATA"
MO$+ "DATA"
MID$(A$,2,5) + MID$("MAN", 1,2)
M$ +A$+ 8$

97

-11111 TRS-80 MODEL Ill

3. Relational expressions, which test the relationship between two expressions.
Examples:

A 1
A$>B$

4. Logical expressions, which test the logical relationship between two
expressions. Examples:

A$ = "YES" AND B$ = "NO"
C>5 OR M< B OR 0>2
578 AND 452

Functions

Functions are automatic subroutines. Most BASIC functions perform computations
on data. Some serve a special purpose such as controlling the video display or
providing data on the status of the computer. You may use functions in the same
manner that you use any data- as part of a statement.

These are some ofBASIC's functions:

INT
ABS
STRING$

How Basic Handles Data
Model III BASIC offers several different methods of handling your data. Using these
methods properly can greatly improve the efficiency of your program. In this
section we will discuss:

I. Ways of Representing Data
a. Constants
b. Variables

2. How BASIC Stores Data
a. Numeric (integer, single precision, double precision)
b. String

3. How BASIC Classifies Constants
4. How BASIC Classifies Variables
5. How BASIC Converts Data

98

BASIC

Ways of Representing Data

BASIC recognizes data in two forms-either directly, as constants, or by reference
to a memory location , as variables.

Constants

All data is input into a program as ''constants'' - values which are not subject to
change. For example , the statement:

PRINT "1 PLUS 1 EQUALS"; 2

contains one string constant ,

1 PLUS 1 EQUALS

and one numeric constant

2

In these examples, the constants ''input'' to the PRINT statement. They tell PRINT

what data to print on the Display.

These are more examples of constants:

3.14159
1.775E +3
"NAME TITLE"
57

Variables

"L. 0 . SMITH"
"0123456789ABCDEF"
-123.45E-8
"AGE"

A variable is a place in memory-a sort of box or pigeonhole-where data is
stored. Unlike a constant , a variable 's value can change. This allows you to write
programs dealing with changing quantities . For example , in the statement:

A$= "OCCUPATION"

The variable A$ now contains the data OCCUPATION . However, if this statement
appeared later in the program:

A$ = "FINANCE"

The variable A$ would no longer contain OCCUPATION. It would now contain the
data FINANCE.

99

Variable Names

In BASIC, variables are represented by names. Variable names must begin with a
letter, A through Z . This letter may be followed by one more character-either a
digit or a letter .

For example

AM A A1 81 AB

are all valid and distinct variable names.

Variable names may be longer than two characters . However, only the first two
characters are significant in BASIC.

For example:

SUM SU SUPERNUMERARY

are all treated as the same variable by BASIC.

Reserved Words

Certain combinations of letters are reserved as BASIC keywords, and cannot be used
in variable names. For example:

OR LAND LENGTH MIFFED

cannot be used as variable names, because they contain the reserved of
OR, AND, LEN, and IF, respectively.

See the Appendix for a list of reserved words .

Simple and Subscripted Variables

All of the variables mentioned above are simple variables . They can only refer to
one data item.

Variables may also be subscripted so that an entire list of data can be stored under
one variable name. This method of data storage is called an array. For example, an
array named A may contain these elements (subscripted variables):

A(O) A(1) A(2) A(3) A(4)

100

You may use each of these elements to store a separate data item, such as:

A(0) = 5.3
A(1) = 7.2
A(2) = 8.3

A(3) = 6.8
A(4) = 3.7

BASIC

In this example , array A is a one-dimensional array , since each element contains
only one subscript. An array may also be two-dimensional, with each element
containing two subscripts . For example, a two-dimensional array named X could
contain these elements:

X(0,0) = 8.6
X(1,0) = 7.3

X(0, 1) = 3.5
X(1,1)=32.6

With BASIC , you may have as many dimensions in your array as you would like .
Here is an example of a three-dimensional array named L which contains these 8
elements:

L(0,0,0) = 35233
L(0,0, 1) = 52000

L(1,0,0) = 33333
L(1,0, 1) = 53853

L(0, 1 ,0) = 96522
L(0, 1, 1) = 10255

L(1, 1,0) = 96253
L(1 , 1 , 1) = 79654

BASIC assumes that all arrays contain 11 elements in each dimension. If you want
more elements you must use the DIM statement at the beginning of your program to
dimension the array .

For example, to dimension array L , put this line at the beginning of the program:

DIML(1, 1, 1)

to allow room for two elements in the first dimension; two in the second; and two in
the third for a total of 2 * 2 * 2 = 8 elements.

See the Arrays chapter later on in this manual .

101

- .~ ..

How BASIC Stores Data

The way that BASIC stores data determines the amount of memory it will consume
and the speed in which BASIC can process it .

Numeric Data

You may get BASIC to store all numbers in your program as either integer, single
precision, or double precision. In deciding how to get BASIC to store your numeric
data, remember the tradeoffs . Integers are the most efficient and the least precise.
Double precision is the most precise and least efficient .

Integers
(Speed and Efficiency, Limited Range)

To be stored as an integer, a number must be whole and in the range of - 32768 to
32767. An integer value requires only two bytes of memory for storage . Arithmetic
operations are faster when both operands are integers.

For example:

32000 -2 500 - 12345

can all be stored as integers.

Single-Precision Type
(General Purpose, Full Numeric Range)

Single-precision numbers can include up to 7 significant digits, and can represent
normalized values* with exponents up to ± 38, i.e., numbers in
the range:

[-1 x 1038
, -1 x 1 o-38

] [1 x 1 o-3s , 1 x 10381
A single-precision value requires 4 bytes of memory for storage. BASIC assumes a
number is single-precision if you do not specify the level of precision.

*In this reference manual, normalized value is one in which exactly one digit
appears to the left of the decimal point . For example, 12.3 expressed in normalized
form is 1.23 x 10.

102

For example:

10.001 -200034 1.774E6

can all be stored as single-precision values .

BASIC

6.024E-23 123.4567

Note: When used in a decimal number, the symbol E stands for' 'single-precision
times 10 to the power of. .. '' Therefore 6 . 024E-23 represents the single-precision
value:

6.024x 10-23

Double-Precision Type
(Maximum Precision, Slowest in Computations)

Double-precision numbers can include up to 17 significant digits , and can represent
values in the same range as that for single-precision numbers. A double-precision
value requires 8 bytes of memory for storage. Arithmetic operations involving at
least one double-precision number are slower than the same operations when all
operands are single-precision or integer.

For example:

1010234578
-8.7777651010
3.1415926535897932
8.00100708D 12

can all be stored as double-precision values.

Note: When used in a decimal number, the symbol D stands for' 'double-precision
times 10 to the power of .. . '' Therefore 8.00100708 D 12 represents the value

8.00100708 X 10 12

103

- .-.

String Data

Strings (sequences of characters) are useful for storing non-numeric information
such as names, addresses, text, etc. You may store any ASCII characters as a string.
(A list of ASCII characters is in the Appendix).

For example, the data constant:

Jack Brown, Age 38

can be stored as a string of 18 characters. Each character (and blank) in the string is
stored as an ASCII code, requiring one byte of storage. BASIC would store the above
string constant internally as:

Hex 4A 61 63 68 20 42 72 6F 77 6E 2C 20 41 67 65 20 33 38
Code

ASCII
Char- J a C k B r 0 w n • A g e 3 8
acter

A string can be up to 255 characters long. Strings with length zero are called ''null''
or ''empty''.

How BASIC Classifies Constants

When BASIC encounters a data constant in a statement, it must determine the type of
the constant: string, integer, single precision, or double precision. First, we will list
the rules BASIC uses to classify the constant. Then we will show you how you can
override these rules, if you want a constant stored differently:

Rulel

If the value is enclosed in double-quotes, it is a string. For example:

"YES"
"3331 Waverly Way"
"1234567890"

the values in quotes are automatically classified as strings.

Rule2

If the value is not in quotes, it is a number. (An exception to this rule is during data
input by an operator' and in DATA lists. See INPUT' INKEY$, and DAT A)

104

'

For example:

123001
1
- 7.3214E+6

are all numeric data,

Rule3

Whole numbers in the range of - 32768 to 32767 are integers. For example:

12350
-12
10012

are integer constants .

Rule4

If the number is not an integer and contains seven or fewer digits, it is
single-precision. For example:

1234567
-1.23
1.3321

are all single-precision.

Rule5

BASIC

If the number contains more than seven digits, it is double precision. For example,
these numbers:

1234567890123456
- 1000000000000.1
2.777000321

are all double precision.

105

Type Declaration Tags

You can override BASIC's normal typing criteria by adding the following '' tags '' to
the end of the numeric constant:

Makes the .number single-precision. For example, in the statement:

A= 12.345678901234!

the constant is classified as single-precision , and shortened to seven digits:
12.34567

E Single-precision exponential format. The E indicates the constant is to be
multipled by a specified power of 10. For example:

A= 1.2E5

stores the single-precision number 120000 in A.

Makes the number double-precision . For example, in statement:

PRINT3#/7

the first constant is classified as double-precision before the division takes
place.

D Double-precision exponential format. The D indicates the constant is to be
multipled by a specified power of 10. For example:

A= 1.23456789D - 1

The double-precision constant has the value 0. 123456789.

How BASIC Classifies Variables

When BASIC encounters a variable name in the program , it classifies it as either a
string, integer, single- or double-precision number.

BASIC classifies all variable names as single-precision initially. For example:

AB AMOUNT XY L

are all single-precision initially. If this is the first line of your program:

LP= 1.2

BASIC will classify LP as a single-precision variable .

106

BASIC

However, you may assign different attributes to variables by using definition
statements at the beginning of your program:

DEFINT- Defines variables as integer
DEFDBL- Defines variables as double-precision
DEFSTR - Defines variables as string
DEFSNG- Defines variables as single-precision. (Since BASIC classifies all
variables as single-precision initially anyway, you would only need to use
DEFSNG if one of the other DEF statements were used.

For example:

DEFSTR L

makes BASIC classify all variables which start with Las string variables. After this
statement, the variables:

L LP LAST

can all hold string values only.

Type Declaration Tags

As with constants, you can always override the type of a variable name by adding a
type declaration tag at the end. There are four type declaration tags for variables:

%

$

Integer
Single-precision
Double-precision n
String

For example:

1% FT% NUM% COUNTER%

are all integer variables, regardless of what attributes have been assigned to the
letters I, F, N and C.

T! RY! QUAN! PERCENT!

are all single-precision variables, regardless of what attributes have been assigned
to the letters T, R, Q and P.

X# RR# PREV# LSTNUM#

are all double-precision variables, regardless of what attributes have been assigned
to the letters X, R, P and L.

107

- "··

0$ CA$ WRD$ ENTRY$

are all string variables, regardless of what attributes have been assigned to the
letters Q, C, Wand E .

Note that any given variable name can represent four different variables . For
example:

A5# A5! A5% A5$

are all valid and distinct variable names.

One further implication of type declaration: Any variable name used.without a
tag is equivalent to the same variable name used with one of the four tags. For
example, after the statement:

DEFSTR C

the variable referenced by the name C 1 is identical to the variable referenced by the
name Cl$.

How BASIC Converts Numeric Data

Often your program might ask BASIC to assign one type of constant to a different
type of variable. For example:

A%= 2.34

In this example , BASIC must first convert the single precision constant 2.34 to an
integer in order to assign it to the integer variable A% .

You might also want to convert one type of variable to a different type, such as:

A#=A%
A! =A#
A!=A%

The conversion procedures are listed on the following pages.

108

Single- or double-precision to integer type

BASIC returns the largest integer that is not greater than the original value.

Note: The original value must be greater than or equal to -32768, and less
than 32768 .

Examples

A%= -10.5

Assigns A % the value -11 .

A%=32767.9

Assigns A% the value 32767 .

A%=2.5D3

Assigns A% the value 2500.

A%= -123.45678901234578

Assigns A % the value - 124.

A%= -32768.1

Produces an Overflow Error (out of integer range).

Integer to single- or double-precision

BASIC

No error is introduced. The converted value looks like the original value with zeros
to the right of the decimal place.

Examples

A#=32767

Stores 32767 .000000000000 in A#.

A!= -1234

Stores-1234.000 in A!.

109

Double- to single-precision

This involves converting a number with up to 17 significant digits into a number
with no more than seven. BASIC chops off (truncates) the least significant digits to
produce a seven-digit number. Before Printing such a number, BASIC rounds it off
(4/5 rounding) to six digits.

Examples

A!= 1.234567890124567

Stores 1.234567 in A' However, the statement:

PRINT A!

will display the value 1.23457, because only six digits are displayed. The full seven
digits are stored in memory.

A!= 1.3333333333333333

Stores 1.333333 in A!.

Single- to double-precision

To make this conversion, BASIC simply adds trailing zeros to the single-precision
number. If the original value has an exact binary representation in single-precision
format, no error will be introduced. For example:

A#= 1.5

Stores I .5000000000000 in A#, since 1.5 does have an exact binary representation.

However, for numbers which have no exact binary representation, an error is
introduced when zeros are added . For example:

A#= 1.3

Stores l .299999952316284 in A#.

Because most fractional numbers do not have an exact binary representation, you
should keep such conversions out of your programs . For example, whenever you
assign a constant value to a double-precision variable, you can force the constant to
be double-precision:

A#= 1.3# A#= 1.30

Both store 1.3 in A#.

Here is a special technique for converting single-precision to double-precision ,
without introducing an error into the double-precision value. It is useful when the
single-precision value is stored in a variable.

110

BASIC

Take the single-precision variable, convert it to a string with STR$, then convert the
resultant string back into a number with VAL. That is, use:

VAL (STA$ (single-precision variable))

For example, the following program:

10 A!=1 .3
20 A# = A!
30 PRINTA#

prints a value of:

1 .299999952316284

Compare with this program:

10A!= 1.3
20A# = VAL (STR$(A!))
30PRINTA#

which prints a value of:

1.3

The conversion in line 20 causes the value in A! to be stored accurately in
double-precision variable A#.

Illegal Conversions

BASIC cannot automatically convert numeric values to string, or vice versa. For
example, the statements:

A$= 1234
A%= "1234"

are illegal. (Use STR$ and VAL to accomplish such conversions.)

111

TRS-80 MODEL Ill

How BASIC Manipulates Data
You have many fast methods you may use to get BASIC to count , sort, test and
rearrange your data . These methods fall into two categories:

I. Operators
a. numeric
b . string
C. relational
d. logical

2. Functions

Operators

An operator is the single symbol or word which signifies some action to be taken on
either one or two specified values referred to as operands.

In general, an operator is used like this:

operand- I operator operand-2
operand-I and -2 can be expressions . A few operations take only one operand,

and are used like this:

operator operand

Examples:

6+2

The addition operator + connects or relates its two operands , 6 and 2 , to produce
the result 8.

- 5

The negation operator - acts on a single operand 5 to produce the result negative 5.

Neither 6 + 2 or - 5 can stand alone; they must be used in statements to be
meaningful to BASIC. For example:

A = 6+2
PRINT - 5

112

BASIC

Operators fall into four categories:
• Numeric
• String
• Relational
• Logical

based on the kinds of operands they require and the results they produce.

Numeric Operators

Numeric Operators are used in numeric expressions. Their operands must always
be numeric, and the result they produce is one numeric data item.

In the descriptions below, we use the terms integer, single-precision, and
double-precision operations. Integer operations involve two-byte operands,
single-precision operations involve four-byte operands, and double-precision
operations involve eight-byte operands. The more bytes involved, the slower the
operation.

There are five different numeric operators. Two of them, sign + and sign - , are
unary, that is, they have only one operand. A sign operator has no effect on the
precision of its operand.

For example, in the statement:

PRINT - 77, + 77

the sign operators - and + produce the values negative 77 and positive 77,

respectively.

Note: When no sign operator appears in front of a numeric term, + is assumed.

The other numeric operators are all binary, that is, they all take two operands.
These operators are:

+

*

I
[or (I)

Addition
Subtraction
Multiplication
Division
Exponentiation. Press the (I) key to type in this operator.

113

Addition

The + operator is the symbol for addition. The addition is done with the precision
of the more precise operand (the less precise operand is converted).

For example, when one operand is integer type and the other is single-precision, the
integer is converted to single-precision and four-byte addition is done. When one
operand is single-precision and the other is double-precision, the single-precision
number is converted to double-precision and eight-byte addition is done .

Examples:

PRINT 2 + 3
Integer addition.

PRINT 3.1 + 3
Single-precision addition.

PRINT 1.2345678901234567 + 1
Double-precision addition.

Subtraction

The - operator is the symbol for subtraction . As with addition, the operation is
done with the precision of the more precise operand (the less precise operand is
converted).

Examples :

PRINT 33 - 11

Integer subtraction.

PRINT 33 - 11.1

Single-precision subtraction.

PRINT 12.345678901234567 11

Double-precision subtraction .

114

BASIC

Multiplication

The* operator is the symbol for multiplication. Once again, the operation is done
with the precision of the more precise operand (the less precise operand is
converted).
Examples:

PRINT 33 * 11

Integer multiplication.

PRINT 33 * 11.1

Single-precision multiplication.

PRINT 12.345678901234567 * 11

Double-precision multiplication.

Division

The/ symbol is used to indicate ordinary division. Both operands are converted to
single or double-precision, depending on theiroriginal precision:
• If either operand is double-precision, then both are converted to

double-precision and eight-byte division is performed.
• If neither operand is double-precision, then both are converted to

single-precision and four-byte division is performed.

Examples:

PRINT 3/4
Single-precision division.

PRINT 3.8/4

Single-Precision division.

PRINT 3 / 1.2345678901234567

Double-precision division.

115

Exponentiation

The symbol [denotes exponentiation. It converts both its operands to
single-precision, and returns a single-precision result.

Note: To enter the [operator, press (I).

For example:

PRINT6[.3

prints 6 to the .3 power.

String Operator

BASIC has a string operator (+)which allows you to concatenate (link) two
strings into one. This operator should be used as part of a string expression. The
operands are both strings and the resulting value is one piece of string data.

The + operator links the string on the right of the sign to the string on the
left. For example:

PRINT "CATS"+ "LOVE"+ "MICE"

prints:

CATSLOVEMICE

Since BASIC does not allow one string to be longer than 255 characters, you will
get an error if your resulting string is too long.

Relational Operators

Relational operators compare two numerical or two string expressions to form a
relational expression. This expression reports whether the comparison you set up
in your program is true or false. It will return a - I if the relation is true; a o if it
is false.

116

Numeric Relations

This is the meaning of the operators when you use them to compare numeric
expressions:

<
>

<>or><
=<or<=
=>or>=

Less than
Greater than
Equal to
Not equal to
Less than or equal to
Greater than or equal to

Examples of true relational expressions:

1<2
2<>5
2<=5
2<=2
5>2
7=7

String Relations

BASIC

The relational operators for string expressions are the same as above, although their
meanings are slightly different. Instead of comparing numerical magnitudes, the
operators compare their ASCII sequence. This allows you to sort string data:

<
>

><or<>
<=
>=

Precedes
Follows
Has the same precedence
Does not have the same precedence
Precedes or has the same precedence
Follows or has the same precedence

BASIC compares the string expressions on a character-by-character basis. When
it finds a non-matching character, it checks to see which character has the lower
ASCII code. The character with the lower ASCII code is the smaller (precedent) of
the two strings.

Note: The appendix contains a listing of ASCII codes for each character.

Examples of true relational expressions:
"A" < "B"

The ASCII code for A is decimal 65; for B it's 66.

"CODE" < "COOL"

117

The ASCII code for O is 79; for D it's 68.

If while making the comparison, BASIC reaches the end of one string before
finding non-matching characters, the shorter string is the precedent. For
example:

"TRAIL" < "TRAILER"

Leading and trailing blanks are significant. For example:

"A" < "A"

ASCII for the space character is 32; for A, it 's 65.

"Z - 80" < "Z- 80A"

The string on the left is four characters long; the string on the right is five.

How to Use Relational Expressions

Normally, relational expressions are used as the test in an IF/THEN statement. For
example:

IF A = 1 THEN PRINT "CORRECT"

BASIC tests to see if A is equal to l. lf it is, BASIC prints the message.
IF A$ < 8$ THEN 50

If string A$ alphabetically precedes string B$, then the program branches to line
50.

IF A$ = "YES" THEN PRINT A$

IfR$ equals YES then the message stored as A$ is printed.

However, you may also use relational expressions simply to return the true or
false results of a test. For example:

PRINT 7 = 7

Prints - l since the relation tested is true.

PRINT "A" > "B"

Prints O because the relation tested is false.

118

BASIC

Logical Operators

Logical operators make logical comparisons. Normally, they are used in IF/THEN

statements to make a logical test between two or more relations. For example:

IFA = 1 OR C = 2 THEN PRINT X

The logical operator, OR, compares the two relations A= 1 and C = 2.

Logical operators may also be used to make bit-comparisons of two numeric
expressions.

For this application, BASIC does a bit-by-bit comparison of the two operands,
according to predefined rules for the specific operator.

Note: The operands are converted to integer type, stored internally as 16-bit,
two's complement numbers. To understand the results of bit-by-bit
comparisons, you need to keep this in mind.

The following table summarizes the action of Boolean operators in bit
manipulation.

Meaning of First Second
Operator Operation Operand Operand

AND When both bits are 1, the 1 1
result will be 1. Otherwise, 1 0
the result will be 0. 0 1

0 0

OR Result will be 1 unless both 1 1
bits are 0. 1 0

0 1
0 0

NOT Result is opposite of bit. 1
0

Result

1
0
0
0

1
1
1
0

0
1

119

Hierarchy of Operators

When your expressions have multiple operators, BASIC performs the operations
according to a well-defined hierarchy, so that results are always predictable.

Parentheses

When a complex expression includes parentheses, BASIC always evaluates the
expressions inside the parentheses before evaluating the rest of the expression.
For example, the expression:

8 - (3-2)

is evaluated like this:

3-2=1
8 - 1 = 7

With nested parentheses, BASIC starts evaluating the innermost level first and
works outward. For example:

4 * (2 - (3 - 4))

is evaluated like this:

3-4= -1
2-(-1)=3

4*3=12

Order of Operations

When evaluating a sequence of operations on the same level of parenthesis,
BASIC uses a hierarchy to determine what operation to do first.

The two listings below show the hierarchy BASIC uses. Operators are shown in
decreasing order of precedence. Operators listed in the same entry in the table
have the same precedence and are executed as encountered from left to right:

Numerical operations:

120

[or (Exponentiation)
+ , - (Unary sign operands [not addition and subtraction])

*, I
+ , - (Addition and subtraction)

<, >, =, <=, >=, <>
NOT
AND
OR

BASIC

String operations:

I
+

. <,>, =,<=, > = ,<>

For example , in the line:

X*X + 5[2.8

BASIC will find the value of 5 to the 2.8 power. Next, it will multiply X * X, and
finally add this value to the value of 5 to the 2.8. If you want BASIC to perform the
indicated operations in a different order, you must add parentheses . For
example:

X*(X + 5 [2.8)

or

X* (X + 5) [2.8

Here's another example:

IF X = 0 OR Y> O AND Z = 1 THEN 255

The relational operators = and > have the highest precedence, so BASIC

performs them first, one after the next , from left to right . Then the logical
operations are performed . AND has a higher precedence than OR, so BASIC

performs the AND operation before OR.

If the above line looks confusing because you can't remember which operator is
precedent over which, then you can use parentheses to make the sequence
obvious:

IF X = 0 OR ((Y > 0) AND (Z = 1)) THEN 255

121

-r - - Ii TRS-80 MODEL Ill

'•.

Functions

A function is a built-in sequence of operations which BASIC will perform on data.
A function is actually a subroutine which usually returns a data item. BASIC

functions save you from having to write a BASIC routine , and they operate faster
than a BASIC routine would.

A function consists of a keyword which is usually followed by the data that you
specify. This data is always enclosed in parentheses; if more than one data item is
required, the items are separated by commas.

If the data required is termed ' 'number'' you may insert any numerical expression .
If it is termed' 'string'' you may insert a string ex pression .

Examples:

SOR (A + 6)

Tells BASIC to compute the square root of (A + 6)

MID$ (A$, 3, 2)

Tells BASIC to return a substring of the string A$, starting with the third character,
with a length of 2.

Functions cannot stand alone in a BASIC program. lnstead they are used in the
same way you use expressions- as the data in a statement.

For example

A= SOR (7)

Assigns A the data returned as the square root of 7.

PRINT MID$ (A$, 3, 2)

Prints the substring of A$ starting at the third character and two characters long.

If the function returns numeric data , it is a numeric function and may be used in a
numeric expression. If it returns string data , it is a string function and may be
used in a string expression .

122

BASIC

How to Construct an Expression
Understanding how to construct an expression will help you put together
powerful statements- instead of using many short ones. In this section we will
discuss the two kinds of expressions you may construct:

• Simple
• Complex

as well as how to construct a function.

As we have stated before, an expression is actually data. This is because once
BASIC performs all the operations, it returns one data item. An expression may be
string or numeric. It may be composed of:

• Constants
• Variables
• Operators
• Functions

Expressions may be either simple or complex:

A simple expression consists of a single term: a constant, variable or function .
If it is a numeric term, it may be preceded by an optional + or - sign.

For example:

+A 3.3 -5 SQR(8)

are all simple numeric expressions, since they only consist of one numeric term .

A$ STRING$ (20, A$) "WORD" "M"

are all simple string expressions since they only consist of one string term.

Here's how a simple expression is formed: ~-------.
+ ~ CONSTANT

'--...../

VARIABLE

FUNCTION

A complex expression consists of two or more terms (simple expressions)
combined by operators. For example:

A-1 X+3.2-Y 1 = 1 AANDB ABS (B) + LOG(2)

are all examples of complex numeric expressions . (Notice that you can use the
relational expression (I= 1) and the logical expression (5 AND 3) as a complex
numeric expression since both actually return numeric data.)

A$+B$ "Z"+Z$ STRING$(10, "A")+ "M"

are all examples of complex string expressions.

123

-•i11 TRS-80 MODEL Ill

This is how a complex numeric expression is formed:

SIMPLE
EXPRESSION

This is how a complex string expression is formed:

SIMPLE EXPRESSION

Most functions, except functions returning system information, require that you
input either or both of the following kinds of data:

• One or more numeric expressions
• One or more string expressions.

This is how a function is formed:

KEYWORD EXPRESSION

If the data returned is a number, the function may be used as a term in a numeric
expression. If the data is a string, the function may be used as a term in a string
expression.

124

BASIC

16 / Commands
Whenever a prompt > is displayed, your Computer is in the ''Immediate'' or
"Command" Mode. You can type in a command, (ENTER) it, and the Computer will
respond immediately . This chapter describes the commands you' ll use to control
the Computer- to change modes, begin input and output procedures, alter
program memory, etc. All of these commands - except CONT- may also be used
inside your program as statements. In some cases this is useful; other times it is
just for very specialized applications.

The commands described in this chapter are:

AUTO

CLEAR

CLOAD

CLOAD?

CONT

CSAYE

DELETE

AUTO line number, increment

EDIT

LIST
LUST

NEW

RUN

SYSTEM

TROFF

TRON

Tums on an automatic line numbering function for convenient entry of programs -
all you have to do is enter the actual program statements. You can specify a
beginning line number and an increment to be used between line numbers . Or you
can simply type AUTO and press (ENTER), in which case line numbering will begin at
IO and use increments of 10. Each time you press (ENTER), the Computer will
advance to the next line number.

Examples:

AUTO
AUTOS,5
AUTO 100
AUTO 100, 25
AUTO ,10

to use line numbers

10. 20. 30

5 . 10. 15

100,110. 120, ...

100. 125. 150 ..

0. 10. 20

To turn off the AUTO function, press the (BREAK) key . (Note: When AUTO brings up
a line number which is already being used, an asterisk will appear beside the line
number. If you do not wish to re-program the line , press the (BREAK) key to turn off
AUTO function.)

125

-- TRS-80 MODEL Ill
- .-..

CLEARn

When used without an argument (e.g., type CLEAR and press (ENTER)), this
command resets all numeric variables to zero, and all string variables to null. When
used with an argument (e.g., CLEAR 100), this command performs a second
function in addition to the one just described: it makes the specified number of bytes
available for string storage.

Example: CLEAR 100 makes 100 bytes available for strings. When you turn on the
Computer a CLEAR 50 is executed automatically.

CLO AD ''file name''

Lets you load a BASIC program stored on cassette. Place recorder/player in Play
mode (be sure the proper connections are made and cassette tape has been re-wound
to proper position). The file name may be any single character except the
double-quote(").

Note: See '' Using the Cassette Interface'' in the Operation Section for instructions
on which baud rate to use.

Entering CLOAD will turn on the cassette machine and load the first program
encountered. BASIC also lets you specify a desired ' 'file'' in your CLOAD

command. For example, CLOAD "A" will cause the Computer to ignore programs
on the cassette until it comes to one labeled ''A''. So no matter where file ''A'' is
located on the tape, you can start at the beginning of the tape ; file'' A'' will be
picked out of all the files on the tape and loaded. As the Computer is searching for
file'' A'', the names of the files encountered will appear in the upper right corner of
the Display , along with a blinking '' *''.

Only the first character of the file name is used by the Computer for CLOAD,

CLO AD?' and CSA VE operations.

Loading a program from tape automatically clears out the previously stored
program. See also CSA VE.

126

BASIC

CLO AD? ''file name''

Lets you compare a program stored on cassette with one presently in the Computer.
This is useful when you have saved a program onto tape (using CSA VE) and you
wish to check that the transfer was successful. You may spec ify CL0AD')
'file-name'' . If you don't specify a file-name, the first program encountered wi II
be tested. During CLOAD'), the program on tape and the program in memory are
compared byte for byte. If there are any discrepancies (indicating a bad dump), the
message "BAD" will be displayed . In this case, you should CSA VE the program
again. (CLOA0·1, unlike CLOAD, does not erase the program memory .)

Be sure to type the question mark or the Computer will interpret your command as
CLOAD.

CONT
When program execution has been stopped (by the (BREAK) key or by a STOP
statement in the program), type CONT and (ENTER) to continue execution at the point
where the stop or break occurred. During such a break or stop in execution, you
may examine variable values (using PRINT) or change these values. Then type CONT
and (ENTER) and execution will continue with the current variable values . CONT,
when used with STOP and the (BREAK) key, is primarily a debugging tool.

NOTE: You cannot use CONT after EDITing your program lines or otherwise
changing your program . CONT is also invalid after execution has ended normally .
See also STOP.

CSA VE ''file name''

Stores the resident program on cassette tape. (Cassette recorder must be properly
connected, cassette loaded, and in the Record mode , before you enter the CSA VE
command.) You must specify a file-name with this command. This file-name may
be any alpha-numeric character other than double-quote('') . The program stored
on tape will then bear the specified file-name, so that it can be located by a CLOAD
command which asks for that particular file-name. You should always write the
appropriate file-names on the cassette case for later reference.

Examples:

CSAVE"1"
CSAVE"A"

saves resident program and attaches label '' 1 ''
saves resident program and attaches label ''A''

See also CLOAD. and' 'Using the Cassette Interface'' in the Operation Section.

127

DELETE line number-line number

Erases program lines from memory. You may spec ify an indi vidual line or a
sequence of lines , as follows:

DELETE line number
DELETE line number-line number

Erases one line as specified
Erases all program lines starting
with first line number specified
and ending with last number
specified

DELETE-line number Erases all program lines up to
and including the specified
number

The upper line number to be deleted must be a currently used number.

Examples:

DELETES

DELETE11-18

Erases line 5 from memory (error if line 5
not used)
Erases lines I I , 18 and every line in between

If you have just entered or edited a line, you may delete that line simply by entering
DELETE. (use a period instead of the line number).

EDIT line number

Puts the Computer in the Edit Mode so you can modify your resident program. The
longer and more complex your programs are, the more important EDIT will be. The
Edit Mode has its own selection of subcommands, and we have devoted Chapter 9
to the subject.

LIST line number-line number

Instructs the Computer to display all programs lines presently stored in memory. If
you enter LIST without an argument, the entire program will scroll continuously up
the screen. To stop the automatic scrolling, press (SHIFT) and@ simultaneously.
This will freeze the display. Press any key to release the ''pause'' and continue the
automatic scrolling.

128

BASIC

To examine one line at a time, specify the desired line number as an argument in the
LIST command. To examine a certain sequence of program lines, specify the first
and last lines you wish to examine.

Examples:

LIST 50
LIST 50-150
LIST50-
LIST.
LIST -50

LLIST

Displays line 50
Displays line 50, 150 and everything in between
Displays line 50 and all higher-numbered lines
Displays current line (line just entered or edited)
Displays all lines up to and including line 50

W arks like LIST, but outputs to the Printer

LLIST
LLIST100-

LLIST 100-200
LLIST.
LLIST-100

See LIST.

NEW

Lists current program to printer.
Lists line I 00 to the end of the program to the
line printer.
Lists line I 00 through 200 to the line printer.
Lists current line to the line printer.
Lists all lines up to and including line I 00 to the line
printer.

Erases all program lines, sets numeric variables to zero and string variables to null.
It does not change the string space allocated by a previous CLEAR number
statement.

NEW is used in the following program to provide password protection.

10 INPUT A$: IF A$<> "E" THEN 65520
20 !~EM
30 REM REST OF PROGRAM HERE
40 !~EM
6:.\519 END
65520 I\IEW

You can't run the rest of the program until you enter the correct password, in this
case an E.

129

-•- ,- TRS-80 MODEL Ill

'

RUN line number

Causes Computer to execute the program stored in memory . If no line number is
specified, execution begins with lowest numbered program line. lfa line number is
specified, execution begins with the line number. (Error occurs if you specify an
unused line number.) Whenever RUN is executed , Computer also executes a
CLEAR.

Examples:

RUN
RUN 100

Execution begins at lowest-numbered line
Execution begins at line 100

RUN may be used inside a program as a statement; it is a convenient way of starting
over with a clean slate for continuous-loop programs such as games.

To execute a program without CLEA Ring variables, use GOTO.

SYSTEM

Puts the Computer in the System Mode, which allows you to load object files
(machine-language routines or data). Radio Shack offers several
machine-language software packages , such as the Editor-Assembler. You can also
create your own object files using the TRS-80 Editor/ Assembler.

To load an object file: Type SYSTEM and (ENTER)

*?

will be displayed. Now enter the file name (no quotes are necessary) and the tape
will begin loading . During the tape load, the familiar asterisks will flash in the
upper right-hand corner of the Video Display. When loading is complete , another

will be displayed. Type in a slash-symbol/ followed by the address (in decimal
form) at which you wish execution to begin. Or you may simply type in the
slash-symbol and (ENTER) without any address . In thi s case execution will begin at
the address specified by the object file .

NOTE: BASIC object files are stored as blocks. Further, each block has its own
check sum . Should a check sum error occur while loading, the leftmost asterisk will
change into the letter C. If this occurs you will have to reload the entire object file .
(If the tape motion doesn't stop, hold down (BREAK) until READY returns.)

See ' 'Using the Cassette Interface'' in the Operation Section for information on
which baud rate to use and the procedures for loading a system tape.

130

BASIC

TROFF

Turns off the Trace function. See TRON.

TRON

Turns on a Trace function that lets you follow program-flow for debugging and
execution analysis. Each time the program advances to a new program line, that
line number will be displayed inside a pair of brackets.

For example, enter the following program:

10 PRINT "LINE 10"
20 INPUT "PRESS <ENTER> TO BEGIN THE LOOP"; X
30 PRINT "HERE WE GO ... "
L10 GOTO 30

Now type in TRON (ENTER), and RUN (ENTER).

<10>LINE 10
<20>PRESS <ENTER> TO BEGIN THE LOOP?
<30>HERE WE GO ...
<40><30>HERE WE GO .. .
<40><30>HERE WE GO .. .
etc.

(Press (SHIFT) and@ simultaneously to pause execution and freeze display. Press
any key to continue with execution.)
As you can see from the display, the program is in an infinite loop.

The numbers show you exactly what is going on. (To stop execution, press
(BREAK).)

To turn off the Trace function, enter TROFF. TRON and TROFF may be used inside
programs to help you tell when a given line is executed.

For Example

50 Tf<OI~
6C1 A = A + 1
70 TROFF

might be helpful in pointing out every time line 60 is executed (assuming execution
doesn't jump directly to 60 and bypass 50). Each time these three lines are
executed, <60> <70> will be displayed. Without TRON, you wouldn't know
whether the program was actually executing line 60. After a program is debugged,
TRON and TROFF lines can be removed.

131

BASIC

17 / Input-Output
The statements described in this chapter let you send data_fi-0111 Keyboard to
Computer , Computer to Display , and hack and forth between Computer and the
Cassette and the Line Printer (if you have one) . These will he used primarily inside
programs to input data and output results and messages .

Statements covered in this chapter:

PRINT

(cl (PRINT modifier)
TAB ((PRINT modifier)
USING (PRINT formatter)

PRINT item list

INPUT
DATA
READ
RESTORE
LPRINT
PRINT # - 1 (Output to Cassette)
INPUT #-1 (Input to Cassette)

Prints an item or a I ist of items on the Display. The items may be either string
constants (messages enclosed in quotes), string variables, numeric constants
(numbers), variables, or expressions involving all of the preceding items. The
items to be PRINTed may be separated by commas or semi-colons. If commas are
used, the cursor automatica lly advances to the next print zone before printing the
next item. If semi-colons are used , no space is inserted between the items printed on
the Display . In cases where no ambiguity would result, all punctuation can be
omitted.

Examples:

30 X :::: 5
40 PRINT 25; "IS EQUAL TO"; X t 2
50 END

80 A$= "STRING"
90 PRINT A$; A$, A$; " "; A$
100 END

130 X ::::: 25
140 PRINT 25 "IS EQUAL TO" X
150 END

180 A= 5: 8 = 10: C = 3
190 PRINT ABC
200 END

133

- .-...

Postive numbers are printed with a leading blank (instead of a plus sign); all
numbers are printed with a trailing blank; and no blanks are inserted before or after
strings (you can insert them with quotes as in line 90).

In line 140 no punctuation is needed; but in line 190 zero will print out because ABC

is interpreted as a single variable which has not been assigned a value yet.

230 PRINT "ZONE 1","ZONE 2","ZONE 3","ZONE 4","ZONE 1 ETC"
240 END

There are four 16-character print zones per line.

270 PRINT "ZONE 1",,"ZONE 3"
280 END

The cursor moves to the next print zone each time a comma is encountered.

300 PRINT "PRINT STATEMENT #10";
310 PRINT "PRINT STATEMENT #20"
320 END

A trailing semi-colon overrides the cursor-return so that the next PRINT begins
where the last one left off (see line 300).

If no trailing punctuation is used with PRINT, the cursor drops down to the beginning
of the next line.

PRINT@position, item list

Specifies exactly where printing is to begin. The@ modifier must be a number
from Oto 1023. Refer to the Video Display worksheet, Appendix C, for the exact
position of each location 0-1023:

100 PRINT@550, "LOCATION 550"

RUN this to find out where location 550 is.

100 PRINT@ 550, 550;@ 650, 650

134

BASIC

Whenever you PRINT@ on the bottom line of the Display, there is an automatic
line-feed, causing everything displayed to move up one line. To suppress this, use a
trailing semi-colon at the end of the statement.

Example:

100 PRINT@1000, 1000;
110GOTO 110

Use a trailing semi-colon or comma any time you want to suppress the line feed.

PRINT TAB (expression)

Moves the cursor to the specified position on the current line (modulo* 128 if you
specify TAB positions greater than 127). TAB may be used several times in a PRINT

list.

The value of expression must be between O and 255 inclusive.

Example:

10 PRINT TAB (5) "TABBED 5"; TAB(25) "TABBED 25"

No punctuation is required after a TAB modifier.

340 "FROM PRINT TAB<EXPRESSION)
35121 X == 3
369 PRINT TAB(X) X; TAB(X t 2) X t 2; TAB(X t 3) X t 3
370 END

Numerical expressions may be used to specify a TAB position. This makes TAB very
useful for graphs of mathematical functions, tables, etc. TAB cannot be used to
move the cursor to the left. If cursor is beyond the specified position, the TAB is
ignored.

*Modulo A cyclic counting system. Modulo 64 means the count goes from zero to
63 and then starts over at zero.

Note: In 64 characters/line mode, TAB will tab (count) over correctly (eight
characters per tab). In double-size mode (32 characters/line), the TAB function tabs
over in the following manner: eight characters, two characters, eight characters,
two characters, etc.

135

PRINT USING string; item list

This statement allows you to specify a format for printing string and numeric
values. It can be used in many applications such as printing report headings.
accounting reports. checks. or wherever a specific print format is required.

The PRINT USING statement uses the following format:
PRINT USING string ; value

String and value may be expressed as variables or constants. This statement will
print the expression contained in the string. inserting the numeric value shown to
the right of the semicolon as specified by the field specifiers.

The following field specifiers may be used in the string:

**

$

$$

**$

(I) (1) CD CD
or [[[[

136

This sign specifies the position of each digit located in the
numeric value. The numberof # signs you use establishes the
numeric field. If the numeric field is greater than the number
of digits in the numeric value, then the unused field positions
to the left of the number will be displayed as spaces and
those to the right of the decimal point will be displayed as
zeros.

The decimal point can be placed anywhere in the numeric
field established by the# sign. Rounding-off will take place
when digits to the right of the decimal point are suppressed.

The comma- when placed in any position between the first
digit and the decimal point-will display a comma to the left
of every third digit as required. The comma establishes an
additional position in the field.

Two asterisks placed at the beginning of the field will cause all
unused positions to the left of the decimal to be filled with
asterisks. The two asterisks will establish two more positions
in the field.

A dollar-sign will be printed ahead of the number.

Two dollar signs placed at the beginning of the field will act
as a floating dollar sign. That is, it will occupy the first position
preceding the number.'

If these three signs are used at the beginning of the field. then
the vacant positions to the left of the number will be filled by
the * sign and the$ sign will again position itself in the first
position preceding the number.

Causes the number to be printed in exponential (E or D) format.
This will be displayed as a '' [''.

+

BASIC

When a + sign is placed atthe beginning or end of the field, it
will be printed as specified as a + for positive numbers or as
a - for negative numbers.

When a - sign is placed at the end of the field , it will cause a
negative sign to appear after all negative numbers and will
appear as a space for positi ve numbers .

% spaces% To specify a string field of more than one character,
% spaces % is used. The length of the string field will be 2
plus the number of spaces between the percent signs.

Causes the Computer to use the first string character of the current value.

Any other character that you include in the USING string will be displayed as a string
literal.

The following program will help demonstrate these format specifiers:

10 INPUT "TYPE IN FORMAT, THEN DATA"; AS, A
20 PRINT USING AS; A
30 GOTO 10

RUN this program and try various specifiers and strings for A$ and various values
for A.

For Example:

>RUN
TYPE IN FORMAT, THEN DATA?##.#, 12.12
12. 1
TYPE IN FORMAT, THEN DAT/\7 =ti=#.#' 1. 34

1. 3
l YPE IN FORMAT, THEN DATA? ###.##, 1000.33
% 1 (2)(2)12). 33
TYPE IN FORMAT, THEN DATA?

The% sign is automatically printed if the field is not large enough to contain the
number of digits found in the numeric value. The entire number to the left of the
decimal will be displayed preceded by this sign.

>RUN
TYPE IN FORMAT, THEN DATA?##.##, 12.127
12.13
TYPE IN FORMAT, THEN DATA?

Note that the number was rounded to two decimal places.

137

TYPE IN FORMAT, THEN DATA?+##.##, 12.12
+12.12
TYPE IN FORMAT, THEN DATA? "THE ANSWER E; +:M:#. ##", -.. ·Vi:. 12
THE ANSWER IS -12.12
lYPE IN FORMAT, THEN DATA?##.##+, 12.12
1 :::-: . 12+
TYPE IN FORMAT, THEN DATA? ##.##+, -12 . 1 .-,

.,;:.

12. 12·--
l YPE IN FORMAT, THEN DATA? ##.##-- , 12 . 1 ·-:, ..:..

12. 12
TYPE IN FORMAT, THEN DATA? ##.##- , -12 . 1 ·-:, ..:..

12. 12 .. ,-

TYPE IN FORMAT, THEN DATA? "·IHE·## IN TOTAL. II '

*·M-12 IN TOTAL.
TYPE IN FORMAT, THEN DATA? 1,###. ##' 1. 2. 1 .-, ..::.
$ 12. 12
TYPE IN FORMAT, THEN DATA? $$###.##, 12. 1 ·-::•

$12. 1 :::-:
TYPE IN FORMAT, THEN DATA?**$###.##, 12.12
,!H(.. M-$1:2. 12

12.

TYPE IN FORMAT, THEN DATA? "#,###,###", 1234567
1, 2:3.l•, 570
TYPE IN FORMAT, THEN DATA?

Another way of using the PRINT USING statement is with the string field specifiers
"! " and % spaces % .

Examples:

PRINT USING"!"; string

PRINT USING"% %"; string

The''!'' sign will allow only the first letter of the string to be printed. The'' %
spaces%'' allows spaces + 2 characters to be printed . Again, the string and
specifier can be expressed as string variables . The following program will
demonstrate this feature:

12

10 INPUT "TYPE IN THE FORMAT, THEN THE STRING DATA"; A$, 8$
20 PRINT USING A$; B$
30 GOTO 10

and RUN it:

TYPE IN THE FORMAT, THEN THE STRING DATA? ! ' ABCDE
A
TYPE IN THE FORMAT, THEN THE STRING DATA? '1/. '1/. ' ABCDE
AB
TYPE IN THE FORMAT, THEN THE STRING DATA? '1/. '1/.' ABCDE
ABCD
TYPE IN THE FORMAT, THEN THE STRING DATA?

138

BASIC

Multiple strings or string variables can be joined together (concatenated) by these
specifiers. The '' ! '' sign will allow only the first letter of each string to be printed.
For example:

10 INPUT "TYPE IN THREE NAMES"; A$, BS, CS
20 PRINT USING"!"; AS, 8$, CS
:m GOTO 10

And RUN it. ..

>RUN
TYPE IN THREE NAMES? ABC, DEF, GHI
ADG
TYPE IN THREE NAMES?

By using more than one '' ! '' sign, the first letter of each string will be printed with
spaces inserted corresponding to the spaces inserted between the''!'' signs. To
illustrate this feature, make the following change to the last little program:

20 PRINT USING" 1

And RUN it. ..

>RUN
lYPE IN THREE NAMES? ABC, DEF, GHI
A D G
TYPE IN THREE NAMES?

Spaces now appear between letters A, D and G to correspond with those placed
between the three '' ! '' signs.

Try changing '' ! ! ! ' ' to ''%%' 'in line 20 and run the program.

The following program demonstrates one possible use for the PRINT USING

statement.

51121 CLS
520 A$="**$##,######.## DOLLARS"
530 INPUT "WHAT IS YOUR FIRST NAME"; F$
540 INPUT "WHAT IS YOUR MIDDLE NAME"; M$
550 INPUT "WHAT IS YOUR LAST NAME"; LS
560 INPUT "ENTER THE AMOUNT PAYABLE"; P
570 PRINT: PRINT "PAY TO THE ORDER OF";
~:,80 PRINT USING "!. ! . 'l. 'l."; F$, MS, l.$
600 PRINT: PRINT USING A$; P
620 END

139

TRS-80 MODEL Ill

RUN the program . Remember, to save programming time, use the'"?" sign for
PRINT. Your display should look something like this :

WHAT IS YOUR FIRST NAME? ALBERT
WHAT IS YOUR MIDDLE NAME 7 BARCUSSI
WHAT IS YOUR LAST NAME? COOSEY
ENTER THE AMOUNT PAYABLE 7 12385.34

PAY TO THE ORDER OF A. 8. COOSEY

*****$12,385.30 DOLLARS

If you want to use a double-precision amount without rounding off or going into
scientific notation, then simply add the double precision sign (#)after the variable
Pin Lines 560 and 600. You will then be able to use amounts up to 16 decimal
places long.

INPUT item list

Causes Computer to stop execution until you enter the specified number of values
via the keyboard. The INPUT statement may specify a list of string or numeric
variables to be input. The items in the list must be separated by commas.

100 INPUT X$, X1 , Z$, Z1

This statement calls for you to input a string-literal, a number, another string literal ,
and another number , in that order. When the statement is encountered, the
Computer will display a

?

You may then enter the values all at once or one at a time. To enter values all at
once, separate them by commas. (If your string literal includes leading blanks,
colons, or commas , you must enclose the string in quotes .)

For example, when I ine 100 (above) is RUN and the Computer is waiting for your
input, you could type

JIM,50,JACK,40

The Computer will assign values as follows:

X$ = "JIM" X1 = 50 Z$="JACK" Z1 = 40

If you (ENTER) the values one at a time, the Computer will display a

??

. . . indicating that more data is expected . Continue entering data until all the
variables have been set , at which time the Computer will advance to the next
statement in your program .

140

BASIC

Be sure to enter the correct type of value according to what is called for by the INPUT

statement. For example , you can't input a string-value into a numerical variable. If
you try to, the Computer wi ll display a

?REDO
?

and give you another chance to enter the correct type of data value, start ing with the
firs t value called for by the INPUT list. T he Computer will accept numeric data for
string input.

NOTE: You cannot input an expression into a numerical value -you must input a
simple numerical constant.

Example:

10 INPUT X 1 , Yl <.t;
2(2) PHINT X 1, Y1 <t,
3 0 END
>RUN
' ') 1 + 3
'i F~EDO
') H1
?? "TH IS I f,; A COMMA II

10 THIS IS A COMMA

It was necessary to put quotes around "'TH IS IS A COMMA ... because the string
contained a comma.

If you type in more data elements than the INPUT statement specifies , the Computer
wi ll display the message

?EXTRA IGNORED

and continue with normal execution of your program.

If you press (ENTER) without typing anything, the variables will have the values they
were previously ass igned .

You can also include a ' 'prompting message'' in your INPUT statement. This will
make it easier to input the data correct! y. The prompting message must
immediately fo llow " INPUT" , must be enclosed in quotes, and must be fo llowed by
a semi-colon .

Example:

10 INPUT "ENTER NAME, AGE"; N$, A
2 0 PRINT II HELLO, 11

; N$; 11
, YOU ARE AT LEAST "; A * 365 ; 11 DAYS OLD"

RUN
ENTER NAME, AGE? DO RAMEY, 31
HELLO, DO RAMEY, YOU ARE AT LEAST 11315 DAYS OLD

141

-- TRS-80 MODEL Ill
- .-.

DATA item list

Lets you store data inside your program to be accessed by READ statements. The
data items will be read sequentially, starting with the first item in the first DATA

statement, and ending with the last item in the last DATA statement. Items in a DATA

list may be string or numeric constants- no expressions are allowed. If your string
values include colons, commas or leading blanks, you must enclose these values in
quotes.

It is important that the data types in a DATA statement match up with the variable
types in the corresponding READ statement. DAT A statements may appear anywhere
it is convenient in a program . Generally, they are placed consecutively, but this is
not required.

Examples:

10 READ N1$, N2$, N3, N4
20 DATA THIS IS ITEM ONE, THIS IS ITEM TWO, 3, 4
30 PRINT N1$, N2$, N3, N4

See READ, RESTORE.

READ item list

Instructs the Computer to read a value from a DATA statement and assign that value
to the specified variable. The first time a READ is executed, the first value in the first
DATA statement will be used; the second time, the second value in the DATA

statement will be read. When all the items in the first DATA statement have been
read, the next READ will use the first value in the second DAT A statement; etc. (An
Out-of-Data error occurs if there are more attempts to READ than there are DATA

items.) The fol lowing program illustrates a common application for READ/DAT A

statements.

142

700 PRINT "NAME","AGE"
710 READ N$

BASIC

720 IF NS= "END" THEN PRINT "END OF LIST": END
7:317.J READ AGE
740 IF AGE< 18 PRINT NS, AGE
7~3(2) GOTO 710
760 DATA "SMITH, JOHN", 30, "ANDERSON,T.M.", 20
T70 DATA ",JONEf.3, BILI ... ", 15, "DOE, SALLY", 21
780 DATA "COLLINS, ANDY", 17, END

The program locates and prints all the minors' names from the data supplied. Note
the use of an END string to allow READing lists of unknown length.

SeeDATA,RESTORE

RESTORE

Causes the next READ statement executed to start over with the first item in the first
DATA statement. This lets your program re-use the same DATA lines.

Example:

1310 READ X
820 RESTORE
830 READY
8'•0 PRINT X, Y
8517.J DATA 50, 60
B60 END

Because of the RESTORE statement, the second READ statement starts over with the
first DATA item.

SeeREAD,DATA

143

LPRINT
This command or statement allows you to output information to the Line Printer.
For example, LPRINT A will list the value of A to the line printer. LPRINT can also be
used with all the options available with PRINT except PRINT@.

Examples:

LPRINT variable or expression lists the variable or expression to the line printer .

LPRINT USING prints the information to the line printer using the format specified .

LPRINT TAB will move the line printer carriage position to the right as indicated by
the TAB expression .

Example:

10 LPRINT TAB (5) "NAME" TAB (30) "ADDRESS" STRING$(63,32) "BALANCE"

will print NAME at column 5, ADDRESS at column 30, and BALANCE at column 100.

See PRINT.

PRINT #-1, item list

Prints the values of the specified variables onto cassette tape . (Recorder must be
properly connected and set in Record mode when this statement is executed.)

Example:
890 Al= -30.334: BS= "STRING-VALUE"
900 PRINT #- 1, Al, 8$, "THAT'S ALL"
910 END
This stores the current values of Al and B$, and also the string-literal ''THAT'S

ALL''. The values may be input from tape later using the INPUT #-I statement. The
INPUT #-I statement must be identical to the PRINT #-1 statement in terms of
number and type of items in the PRINT #-I /INPUT lists . See INPUT #-1.

Special Note:

The values represented in item list must not exceed 248 characters total ; otherwise
all characters after the first 248 will be truncated . For example, PRINT #-1, A#,
B#, C#, 0#, E#, F#, G#, H#, I#, J#, A$ will probably exceed the maximum
record length if A$ is longerthan about 75 characters. If you have a lengthy list . you
should break it up into two or more PRINT# statements.

Note: When data tapes are read-in or written-out via PRINT#, they will transfer at
500 baud no matter what baud you specify.

144

BASIC

INPUT #-1, item list

Inputs the specified number of values stored on cassette and assigns them to the
specified variable names .

Example:

50 INPUT #-1 ,X,P$,T$

When this statement is executed , the Computer will turn on the tape machine , input
values in the order specified, then turn off the tape machine and advance to the next
statement. If a string is encountered when the INPUT I ist calls for a number, a bad
file data error will occur. If there are not enough data items on the tape to' 'fill'' the
INPUT statement, an Out of Data error will occur.

The Input list must be identical to the Print list that created the taped
data-block (same number and type of variables in the same sequence.)

Sample Program

Use the two-line program supplied in the PRINT# description to create a short data
file. Then rewind the tape to the beginning of the data file, make all necessary
connections, and put cassette machine in Play mode. Now run the following
program .

10 INPUT #-1, Al, 8$, LS
20 PRINT Al, 8$, L$
30 IF L$ = "THAT'S ALL" THEN END
40 REM PROGRAM COULD GO BACK TO LINE 10 FOR MORE DATA

This program doesn ' t care how long or short the data file is, so long as:
1) the file was created by successive PRINT# statements identical in form to

line 10
2) the last item in the last data triplet is "THAT'S ALL" .

Note: When data tapes are read-in or written-out via INPUT#, they will transfer at
500 baud no matter what baud you specify.

145

BASIC

18 / Program Statements
MODEL Ill BASIC makes several assumptions about how to run your program. For
example:
* Variables are assumed to be single-precision (unless you use type declaration

characters-see Chapter 15 , "Variable Types").
* A certain amount of memory is automatically set aside for strings and arrays -

whether you use all of it or not.
* Execution is sequential, starting with the first statement in your program and

ending with the last.

The statements described in this chapter let you override these assumptions , to give
your programs much more versatility and power.

NOTE: All BASIC statements except INPUT and INPUT# -1 can be used in the
Immediate Mode as well as in the Execute Mode .

Statements described in this chapter:

Type
Definition

DEFINT
DEFSNG
DEFDBL
DEFSTR

Assignment &
AJlocation

CLEARn
DIM
LET

Sequence of
Execution

END
STOP
GOTO
GOSUB
RETURN
ON ... GOTO
ON ... GOSUB
FOR-NEXT-STEP
ERROR
ON ERROR GOTO
RESUME
REM

Tests
(Conditional
Statements)

IF
THEN
ELSE

147

DEFINT letter range

Variables beginning with any letter in the specified range will be stored and treated
as integers, unless a type declaration character is added to the variable name. This
lets you conserve memory, since integer values take up less memory than other
numeric types. And integer arithmetic is faster than single or double precision
arithmetic. However, a variable defined as integer can only take on values between
- 32768 and + 32767 inclusive.

Examples:

10 DEFINTA, I, N

After line 10, all variables beginning with A, I or N will be treated as integers. For
example, Al, AA, 13 and NN will be integer variables. However, Al#, AA#, 13#
would still be double precision variables, because of the type declaration
characters, which always over-ride DEF statements.

10 DEFINT 1-N

Causes variables beginning with I, J, K, L, Mor N to be treated as integer
variables.

DEFINT may be placed anywhere in a program, but it may change the meaning of
variable references without type declaration characters. Therefore it is normally
placed at the beginning of a program.

DEFSNG letter range

Causes any variable beginning with a letter in the specified range to be stored and
treated as single precision, unless a type declaration character is added. Single
precision variables and constants are stored with 7 digits of precision and printed
out with 6 digits of precision. Since all numeric variables are assumed to be single
precision unless DEFined otherwise, the DEFSNG statement is primarily used to
re-define variables which have previously been defined as double precision or
integer.

Example:

100 DEFSNG I, w-z
Causes variables beginning with the letter I or any letter W through Z to be treated
as single precision. However, 1% would still be an integer variable, and I# a double
precision variable, due to the use of type declaration characters.

148

BASIC

DEFDBL letter range

Causes variables beginning with any letter in the specified range to be stored and
treated as double-precision, unless a type declaration character is added. Double
precision allows 17 digits of precision; 16 digits are displayed when a double
precision variable is PRINTed.

Example:

10 DEFDBL s-z, A-E

Causes variables beginning with one of the letters S through Z or A through E to be
double precision.

DEFDBL is normally used at the beginning of a program, because it may change the
meaning of variable references without type declaration characters.

See DEFINT, DEFSNG, and Chapter 15.

DEFSTR letter range

Causes variables beginning with one of the letters in the specified range to be stored
and treated as strings, unless a type declaration character is added. If you have
CLEARed enough string storage space, each string can store up to 255 characters.

Example:

10 DEFSTR L-Z

Causes variables beginning with any letter L through Z to be string variables, unless
a type declaration character is added. After line 10 is executed, the assignment
LI = "WASHINGTON" will be valid.

SeeCLEARn, Chapters 15 and 19.

149

• - p,-..

CLEARn

When used with an argument n (n can be a constant or an expression), this statement
causes the Computer to set aside n bytes for string storage. In addition all variables
are set to zero. When the TRS-80 is turned on, 50 bytes are automatically set aside for
strings.

The amount of string storage CLEARed must equal or exceed the greatest number of
characters stored in string variables during execution; otherwise an Out of String
Space error will occur.

Example:

10 CLEAR 1000

Makes I 000 bytes available for string storage.

By setting string storage to the exact amount needed, your program can make more
efficient use of memory. A program which uses no string variables could include a
CLEARO statement, for example. The CLEAR argument must be non-negative, or an
error will result.

DIM name (dim], dim2, ... , dimK)

Lets you set the' 'depth'' (number of elements allowed per dimension) of an array
or list of arrays. If no DIM statement is used, a depth of 11 (subscripts 0-10) is
allowed for each dimension of each array used. To create an array with more than
three dimensions, you must use DIM.

Example:

10 DIM A(5), 8(2,3), C$(20)

Sets up a one-dimension array A with subscripted elements 0-5; a two-dimension
array B with subscripted elements 0,0 to 2,3; and a one-dimension string array C$
with subscripted elements 0-20. Unless previously defined otherwise, arrays A and
B will contain single-precision values.

DIM statements may be placed anywhere in your program, and the depth specifier
may be a number or a numerical expression.

Example:

40 INPUT "NUMBER OF NAMES"; N
50 DIM NA (N,2)

To re-dimension an array, you must first use a CLEAR statement, either with or
without an argument. Otherwise an error will result.

150

Example Program:

1 0 AA (Li,) :::: 11 • 5
:20 DIM /.\A (7)
READY
>RUN
?DD ERROR IN 212)
HEADY

See Chapter 20, ARRAYS.

LET variable = expression

BASIC

May be used when assigning values to variables. Radio Shack Model III BASIC does
not require LET with assignment statements, but you might want to use it to ensure
compatibility with those versions of BASIC that do require it.

Examples:

100 LET A$= "A ROSE IS A ROSE"
110 LETB1 =1.23
120 LETX=X-Z1

In each case, the variable on the left side of the equals sign is assigned the value of
the constant or expression on the right side.

END

Terminates execution normally (without a BREAK message). Some versions of
BASIC require END as the last statement in a program; with Model III BASIC it is
optional. END is primarily used to force execution to terminate at some point other
than the physical end of the program.

Example:

10 INPUT S1, S2
20 GOSUB 100
30 REM MORE PROGRAM LINES HERE ...
99 END REM PROTECTIVE END-BLOCK
100 H = SQR(S1*81 + S2*82)
110 RETURN

The END statement in line 99 prevents program control from ''crashing'' into the
subroutine. Now line 100 can only be accessed by a branching statement such as 20
GOSUB 100.

151

STOP

Interrupts execution and prints a BREAK IN line number message. STOP is primarily
a debugging aid. During the break in execution, you can examine or change
variable values. The command CONT can then be used to re-start execution at the
point where it left off. (If the program itself is altered during a break, CONT cannot
be used.)

Example:

10 X :::: f<ND (1 0)
20 STOP
30 GOSUB l t~Q'.10
99 END
1000 REM
1010 f<ETUf~N

Suppose we want to examine what value for Xis being passed to the subroutine
beginning at line 1000. During the break , we can examine X with PRINT X.

GOTO line number

Transfers program control to the specified I ine number. Used alone, GOTO line
number results in an unconditional (or automatic) branch ; however, test statements
may precede the GOTO to effect a conditional branch .

Example:

200 GOTO 10

When 200 is executed, control will automatically jump back to line 10.

You can use GOTO in the Immediate Mode as an alternative to RUN. GOTO line
number causes execution to begin at the specified I ine number, without an
automatic CLEAR. This lets you pass values assigned in the Immediate Mode to
variables in the Execute Mode.

See IF,THEN,ELSE,ON ... GOTO.

152

BASIC

GOSUB line number

Tranfers program control to the subroutine beginning at the specified line number
and stores an address to RETURN to after the subroutine is complete. When the
Computer encounters a RETURN statement in the subroutine, it will then return
control to the statement which follows GOSUB.

If you don't RETURN, the previously stored address will not be deleted from the area
of memory used for saving information , called the stack. The stack might
eventually overflow, but, even more importantly, this address might be read
incorrectly during another operation, causing a hard-to-find program error. So.
always RETURN from your subroutines. GOSUB, like GOTO may be preceded by a
test statement. See IF,THEN,ELSE,ON ... GOSUB.

Example Program:
100 GOSUB 200
110 PRINT "BACK FROM THE SUBROUTINE": END
200 PfUNT "EXECUTING THE SUBROUTINE"
:::::10 RETURN
READY
>RUN
EXECUTING THE SUBROUTINE
BACK FROM THE SUBROUTINE

Control branches from line 100 to the subroutine beginning at line 200. Line 210
instructs Computer to return to the statement immediately following GOSUB, that
is, line 1 10.

RETURN
Ends a subroutine and returns control to statement immediately following the most
recently executed GOSUB. If RETURN is encountered without execution of a
matching GOSUB, an error will occur. See GOSUB.

153

. -~ ii TRS-80 MODEL Ill
=

'

ON n GOTO line number, ... , line number

This is a multi-way branching statement that is controlled by a test variable or
expression. The general format for ON n GOTO is :

ON expression GOTO 1st line number, 2nd line number, . .. , Kth line number

expression must be between O and 255 inclusive.

When ON .. . GOTO is executed , first the expression is evaluated and the integer
portion ... INT(expression) ... is obtained . We ' ll refer to this integer portion as J .
The Computer counts over to the Jth element in the line-number list, and then
branches to the line number specified by that element. If there is no Jth element
(that is, if J > Kor J = 0 in the general format above), then control passes to the next
statement in the program.

If the test expression or number is less than zero, or greater than 255, an error will
occur. The line-number list may contain any number of items .

For example:

100 ON Ml GOTO 150, 160, 170, 150, 180

says "Evaluate MI. If integer portion of MI equals 1 then go to
line 150;

If it equals 2, then go to 160;
If it equal s 3, then go to 170;
If it equals 4 , then go to 150;
If it equals 5, then go to 180;
If the integer portion of MI doesn't equal any of the numbers 1 through 5,

advance to the next statement in the program ."

Sample Program

100 INPUT "ENTER A NUMBER"; X
110 ON SGN<X> + :7~ GOTO 2(2)12), 2112), ~;~:~~0

200 PRINT "NEGATIVE": END
2112) PFHNT "ZERO": END
:2~;:0 PRINT "POSITIVE": END

SGN(X) returns - 1 for X less than zero; 0 for X equal to zero; and + 1 for X greater
than 0 . By adding 2, the expression takes on the values 1, 2, and 3, depending on
whether Xis negative, zero, or positive. Control then branches to the appropriate
line number.

154

BASIC

ON n GOSUB line number, ... , line number

Works like ON n GOTO, except control branches to one of the subroutines specified
by the line numbers in the line-number list.

Example:

100 INPUT "CHOOSE 1, 2, OR 3"; I
110 ON I GOSUB 200, 300, 400
12(2) END
200 PRINT "SUBROUTINE #1": RETURN
300 PRINT "SUBROUTINE #2": RETURN
400 PRINT "SUBROUTINE #3": RETURN

The test object n may be a numerical constant , variable or expression. It must have
a non-negative value or an error will occur.

See ON n GOTO.

FOR counter = exp TO exp STEP exp
NEXT counter

Opens an iterative (repetitive) loop so that a sequence of program statements may
be executed over and over a specified number of times. The general form is
(brackets indicate optional material):

line# FOR counter-variable = initial value TO final value [STEP increment]

line# NEXT [counter-variable]

In the FOR statement, initial value, final value and increment can be constants ,
variables or expressions. The first time the FOR statement is executed , these three
are evaluated and the values are saved; if the variables are changed by the loop, it
will have no effect on the loop's operation. However, the counter variable must
not be changed or the loop will not operate normally.

The FOR-NEXT-STEP loop works as follow s: the first time the FOR statement is
executed, the counter is set to the' 'initial value.'' Execution proceeds until a NEXT

statement is encountered. At this point, the counter is incremented by the amount
specified in the STEP increment. (If the increment has a negative value, then the
counter is actually decremented .) If STEP increment is not used, an increment of I is
assumed.

155

Then the counter is compared with thefinatvalue specified in the FOR statement. If
the counter is greater than the final value, the loop is completed and execution
continues with the statement following the NEXT statement. (If increment was a
negative number, loop ends when counter is less thanfinal value.) If the counter has
not yet exceeded the final value, control passes to the first statement after the FOR

statement.

Example Programs:

10 FOR I= 10 TO 1 STEP -1
20 PRINT I;
30 NEXT
1:~EADY
>RUN

10 9 8 7 6 5 4 3 2 1
READY
>
10 FORK= 0 TO 1 STEP .3
20 PRINT K;
30 NEXT
READY
>RUN

0 .3 .6 .9
READY
>

After K = . 9 is incremented by . 3, K = 1. 2. This is greater than the final value I ,
therefore loop ends without ever printingfina/ value .

10 FORK= 4 TO 0
20 PRINT K;
30 NEXT
READY
>RUN

4
READY
>

No STEP is specified, so STEP 1 is assumed. After K is incremented the first time, its
value is 5. Since 5 is greater than the final value 0 , the loop ends.

10 J = 3: K = 8: L = 2
20 FOR I= J TOK+ 1 STEP L
30 J = 0: K = 0: L = 0
40 PRINT I;
50 NEXT
READY
>RUN

3 5 7 9
READY
>

156

BASIC

The variables and expressions in line 20 are evaluated once and these values
become constants for the FOR-NEXT-STEP loop. Changing the variable values later
has no effect on the loop.

FOR-NEXT loops may be' 'nested'':

10 FOR I= 1 TO 3
20 PRINT "OUTER
30 FOR J = 1
40 PRINT"
50 NEXT J
60 NEXT I

RUN
OUTER LOOP

INNER LOOP
INNER LOOP

OUTER LOOP
INNER LOOP
INNER LOOP

OUTER LOOP
INNER LOOP
INNER LOOP

READY
>

LOOP"
TO 2

INNER LOOP"

Note that each NEXT statement specifies the appropriate counter variable; however,
this is just a programmer's convenience to help keep track of the nesting order. The
counter variable may be omitted from the NEXT statements. But if you do use the
counter variables, you must use them in the right order; i.e., the counter variable
for the innermost loop must come first.

It is also advisable to specify the counter variable with NEXT statements when your
program allows branching to program lines outside the FOR-NEXT loop.

Another option with nested NEXT statements is to use a counter variable list.

Delete line 50 from the above program and change line 60:

60 NEXT J,I

Loops may be nested 3-deep, 4-deep, etc. The only limit is the amount of memory
available.

157

ERROR code

Lets you' 'simulate'' a specified error during program execution. The major use of
this statement is for testing an ON ERROR GOTO routine . When the ERROR code
statement is encountered, the Computer will proceed exactly as if that kind of error
had occurred. Refer to Appendix B for a listing of en-or codes and their meanings.

Example Program:

:l (Zl(t.i E F< f~O f~ l
Fi[/.\DY
>HUl'l
?NF [r·ror in 100
HE:i\DY
.>

1 is the error code for '' attempt to execute NEXT statement without a matching FOR

statement" .

See ON ERROR GOTO, RESUME.

ON ERROR GOTO line number

When the Computer encounters any kind of error in your program, it normally
breaks out of execution and prints an error message. With ON ERROR GOTO, you can
set up an error-trapping routine which will allow your program to' 'recover'' from
an error and continue, without any break in execution. Normally you have a
particular type of error in mind when you use the ON ERROR GOTO statement. For
example, suppose your program performs some division operations and you have
not ruled out the possibility of divi sion by zero. You might want to write a routine to
handle a division-by-zero error, and then use ON ERROR GOTO to branch to that
routine when such an error occurs.

Example:

10 ON ERROR GOTO 100
20 A :::: 1 / 0
90 END
100 PRINT"ERROR # "; ERR/2 + 1
110 RESUME 90

In this ''loaded'' example, when the Computer attempts to execute line 20, a
divide-by-zero error will occur. But because of line 10, the Computer will simply
ignore line 20 and branch to the error-handling routine beginning at line 100.

NOTE: The ON ERROR GOTO must be executed before the en-or occurs or it will
have no effect.

158

BASIC

The ON ERROR GOTO statement can be disabled by executing an ON ERROR GOTO 0.

If you use this inside an error-trapping routine, BASIC will handle the current error
normally.

The error handling routine must be terminated by a RESUME statement. See
RESUME.

RESUME line number

Terminates an error handling routine by specifying where normal execution is to
resume.

RESUME without a line number and RESUMED cause the Computer to return to the
statement in which the error occurred.

RESUME followed by a line number causes the Computer to branch to the specified
line number.

RESUME NEXT causes the Computer to branch to the statement following the point
at which the error occurred.

Sample Program with an Error Handling Routine

605 ON ERROR GOTO 640
610 INPUT "SEEKING SQUARE ROOT OF"; X
620 PRINT SG!R < X)
630 GOTO 610
640 PRINT "IMAGINARY ROOT:"; SQR(-X); "* I"
650 REBUME 610
660 END

RUN the program and try inputting a negative value.

You must place a RESUME statement at the end of your error trapping routine, so
that later errors may also be trapped.

159

-1: · - _ TRS-80 MODEL Ill

'

REM

Instructs the Computer to ignore the rest of the program line. This allows you to
insert comments (REMarks) into your program for documentation. Then , when you
(or someone else) look at a listing of your program, it ' ll be a lot easier to figure out.
If REM is used in a multi-statement program line , it must be the last statement.

Example Program:
710 REM** THIS REMARK INTRODUCES THE PROGRAM**
720 REM** AND POSSIBLY THE PROGRAMMER, TOO. **
730 REM** **
740 REM** THIS REMARK EXPLAINS WHAT THE **
750 REM** VARIOUS VARIABLES REPRESENT: **
760 REM** C - CIRCUMFERENCE R = RADIUS **
7/0 REM** D = DIAMETER **
780 REM

Any alphanumeric character may be included in a REM statement, and the
maximum length is the same as that of other statements: 255 characters total .

In Model Ill BASIC, an apostrophe ' ((SHIFT) C[)) may be used as an abbreviation
for :REM.

'THIS, TOO IS A REMARK

IF true/false expression THEN action-clause

Instructs the Computer to test the following logical or relational expression. If the
expression is True, control will proceed to the '' action '' clause immediately
following the expression. If the expression is False, control will jump to the
matching ELSE statement (if there is one) or down to the next program line.

In numerical terms , if the expression has a non-zero value, it is always equivalent to
a logical True .

Examples:

1.m~ IF X > l.27 THEN Pf~INT "OUT OF 1:v\NGE": END

If Xis greater than 127 , control will pass to the PRINT statement and then to the END
statement. But if X is not greater than 127, control will jump down to the next line
in the program, skipping the PRINT and END statements.

IF 0 <= X AND X <= Y THEN Y = X + 180

If both expressions are True then Y will be assigned the value X + 180. Otherwise
control will pass directly to the next program line, skipping the THEN clause.

See THEN, ELSE.

160

BASIC

THEN statement or line number

Initiates the' 'action clause ' ' of an IF-THEN type statement. THEN is optional except
when it is required to eliminate an ambiguity, as in IF A < 0 100. THEN should be
used in IF-TH EN-ELSE statements .

ELSE statement or line number

Used after IF to specify an alternative action in case the IF test fails. (When no ELSE

statement is used, control falls through to the next program line after a test fails.)

Examples:

100 INPUT A$~ IF A$= " YES " THEN 300 ELSE END

ln line 100, if A$ equals " YES" then the program branches to line 300. But if A$
does not equal· ·YES. , , program skips over to the ELSE statement which then

instructs the Computer to end execution.

200 IF A< B THEN PRINT "A<B" ELSE PRINT "B< =A "

If A is less than B, the Computer prints that fact , and then proceeds down to the next
program line , skipping the ELSE statement. If A is not less than B, Computer jumps
directly to the ELSE statement and prints the specified message . Then control
passes to the next statement in the program.

200 IF A>.001 THEN 8 = 1/A: A= A/5: ELSE 260

If A> .001 is True, then the next two statements will be executed, assigning new
values to Band A. Then the program will drop down to the next line, skipping the

ELSE statement. But if A> .001 is False, the program jumps directly over to the
ELSE statement, which then instructs it to branch to line 260. Note that GOTO is not
required after ELSE.

IF-THEN-ELSE statements may be nested , but you have to take care to match up the
IFS and ELS ES.

810 INPUT "ENTER TWO NUMBERS"; A, 8
820 IF A<= B THEN IF A< B PRINT A;: ELSE PRINT "NEITHER
";: ELSE PRINT B;
830 PRINT "IS SMALLER"
B40 END

RUN the program, inputting various pairs of numbers. The program picks out and
prints the smaller of any two numbers you enter.

161

19 I Strings
''Without string-handling capabilities, a computer is just a super-powered
calculator .'' There's an element of truth in that exaggeration; the more you use the
string capabilities of Model Ill BASIC, the truer the statement 1vill seem.

In Model Ill BASIC any valid variable name can be used to contain string values, by
the DEFSTR statement or by adding a type declaration character to the name. And
each string can contain up to 255 characters .

Moreover, you can compare strings to alphabetize them.for example. You can take
strings apart and string them together (concatenate them). For background
material to this chapter, see Chapter I 5, "Variable Types"; Chapter 18, DEFSTR;
andAppendixH, ''Glossary'' .

Functions covered in this chapter:

FRE(string)
INKEY$
LEN
ASC
CHA$

LEFT$
MID$
RIGHT$
STA$

STRING$
TIME$
VAL

NOTE :Whenever string is given as a function argument, you can use a string
expression or constant.

String Space

Fifty bytes of memory are set aside automatically to store strings. If you run out of
string space, you will get an OS error and you should use the CLEAR n command to
save more space.

Note: CLEAR also sets variables to zero or null strings .

To calculate the space you' II need, multiply the amount of space each variable takes
(See VARPTR) by the number of string variables you are using. including temporary
variables.

Temporary variables are created during the calculation of string function s.
Therefore even if you have on! ya few short string variables assigned in your
program, you may run out of string space if you concatenate them several times.

163

ASC (string)

Returns the ASCII code for the first character of the specified string. The
string-argument must be enclosed in parentheses. A null-string argument will cause
an error to occur.

100 PRINT ASC("A")
110T$ ="AB": PRINT ASC (T$)

Lines 100 and 110 will print the same number.

The argument may be an expression involving string operators and functions:

200 PRINT ASC(RIGHT$(T$, 1))

Refer to the ASCII Code Table, Appendix C.

CHR$ (expression)

Performs the inverse of the ASC function: returns a one-character string whose
character has the specified ASCII, control or graphics code. The argument may be
any number from Oto 255, or any variable expression with a value in that range.
Argument must be enclosed in parentheses.

100 PRINT CHR$(35) Prints a number-sign#

Using CHR$, you can even assign quote-marks (normally used as string-delimiters)
to strings. The ASCII code for quotes'· is 34 . So A$= CHR$(34) assigns the value' ' to
A$.

410 A$= CHR$(34)
420 PRINT "HE SAID, "; A$; "HELLO."; A1;

164

BASIC

CHR$ may also be used to display any of the graphics or special characters . (See
Appendix C, Character Codes.)

460 CLf3
470 FOR I = 129 TO 191
480 PRINT I; CHRS<I>,
-4-90 NEXT
~j(Z)Q) GOTO 500

(RUN the program to see the various graphics characters .)

Codes 0-31 are display control codes. Instead of returning an actual display
character, they return a control character. When the control character is PRINTed,
the function is performed. For example, 23 is the code for 32 character-per-line
format ; so the command, PRINTCHR$(23) converts the display format to 32
characters per line. (Hit CLEAR, execute CLS, or execute PRINTCHR$(28) to return to
64 character-per-line format.)

FRE (string)

When used with a string variable or string constant as an argument, returns the
amount of string storage space currently available. Argument must be enclosed in
parentheses. FRE causes BASIC to start searching through memory for unused string
space. If your program has done a lot of string processing, it may take several
minutes to recover all the '' scratch pad'' type memory.

500 PRINT FRE(A$), FRE(L$), FRE ("Z")

All return the same value .

The string used has no significance; it is a dummy variable. See Chapter 18,
CLEARn.

FRE(number) returns the amount of available memory (same as MEM) .

165

INKEY$

Returns a one-character string determined by a keyboard check. The last key
pressed before the check is returned. If no key has been pressed, a null string
(length zero) is returned. This is a very powerful function because it lets you input
values while the Computer is executing- without using the (ENTER) key. The
popular video games which let you fire at will, guide a moving dot through a maze,
play tennis, etc., may all be simulated using the INKEY$ function (plus a lot of other
program logic, of course).

Characters typed to an INKEY$ are not automatically displayed on the screen.

INKEY$ is often placed inside some sort of loop, so that the keyboard is scanned
repeatedly.

Example Program:

51+0 CLS
550 PRINT@ 540, INKEYS: GOTO 550

RUN the program; notice that the screen remains blank until the first time you hit a
key. The last key hit remains on the screen until you hit another one. (The last key
hit is always saved. The IN KEY$ function uses it until it is replaced by a new value.)

IN KEY$ may be used in sequences of loops to allow the user to build up a longer
string.

Example:

590 PRINT "ENTER THREE CHARACTERS"
612)(2) A$ - INl·-{EY$: IF A$ -·- II II THEN 600 ELSE PRINT
610 8$::: IN~-{EY$: IF 8$ -· II II THEN 610 ELSE PRINT
620 Cit; -- INI-\EY$: IF C$:::: II II THEN 620 ELSE PRINT
630 D$ -· A$ + 8$ + C$

A three-character string D$ can now be entered via the keyboard without using the
(ENTER) key.

NOTE: The statement IF A$=" "compares A$ to the null string. There are no
spaces between the double-quotes.

166

A$;
8$;
C$;

BASIC

LEFT$ (string , n)

Returns the first n characters of string. The arguments must be enclosed in
parentheses . string may be a string constant or expression , and n may be a numeric
expression.

Example Program:

670 A$ = "TIMOTHY"
680 BS = LEFTS (A$, 3)
690 PRINT BS ; " - THAT'S SHORT FOR"; A$

LEN (string)

Returns the character length of the specified string . The string variable, expression,
or constant must be enclosed in parentheses.

730 A$=""
7L10 8$:::: "TOM"
750 PRINT AS, 8$, 8$ + 8$
760 PRINT LEN(A$), LEN(8$), LEN(8$+8$)

167

-- TRS-80 MODEL Ill
- .. -..

MID$ (string,p,n)

Returns a substring of string with length n and starting at position p. The string
name, length and starting position must be enclosed in parentheses. string may be a
string constant or expression, and n and p may be numeric expressions or constants.
For example, MID$ (L$,3, 1) refers to a one-character string beginning with the third
character of L$.

If no argument is specified for the length n, the entire string beginning at position p
is returned.

Example Program:

The first three digits of a local phone number are sometimes called the ''exchange''
of the number. This program looks at a complete phone number (area code,
exchange, last four digits) and picks out the exchange of that number.

800 INPUT "AREA CODE AND NUMBERS (NO HYPHENS, PLEASE)"; P$
810 EX$= MIDS CPS, 4,3)
820 PRINT "NUMBER IS IN THE"; EX$; "EXCHANGE."

RIGHT$(string, n)

Returns the last n characters of string. string and n must be enclosed in parentheses.
string may be a string constant or variable, and n may be a numerical constant or
variable. If LEN(string) is less than or equal ton, the entire string is returned.

10 INPUT "ENTER A WORD"; M~
20 IF LEN(M$) = 0 THEN 10
30 PRINT "THE LAST LETTER WAS:
1+0 GOTO H~

STR$ (expression)

"; F~IGHT1i(M1,-,l)

Converts a numeric expression or constant to a string. The numeric expression or
constant must be enclosed in parentheses. STR$(A), for example, returns a string
equal to the character representation of the value of A. For example, if A 58. 5,
then STR$(A) equals the string" 58.5". (Note the leading blank in" 58.5"). While
arithmetic operations may be performed on A, only string operations and functions
may be performed on the string '' 58. 5''.

PRINT STR$(X) prints X without a trailing blank; PRTNT X prints X with a trailing
blank.

168

Example Program:

860 A= 58.5: B = -58.5
870 PRINT STRS(A)
880 PRINT STRS(B)
890 PRINT STRS(A+B)
900 PRINT STR$(A) + STR$(B)

STRING$ (n, "character" or number)

Returns a string composed of n character-symbols. For example,

BASIC

STRING$(30, "*") returns"******************************". STRING$ is
useful in creating graphs , tables , etc.

The argument n is any numerical expression with a value of from zero to 255.

character can also be a number from 0-255; in this case, it will be treated as an
ASCII, control, or graphics code.

Example:

10 CLE/.\R 200
20 FOR 1=128 TO 191
30 A$= STRINGS(64,I>
'-1-0 Pf~ I NT /:,$;
'.:50 NEXT I

169

... .-..

TIME$

Returns today's date and time. Your Model III contains a built-in clock. To use this
clock, you will want to first set it to the correct date and time. To do this, you may
type and run this little program:

1121 DEFINT A-Z
2121 DIM TM(5)
3121 CL = 16924
4121 PRINT "INPUT 6 VALUES: MO,
5121 INPUT TM (121) , TM (1) , TM (2),

6121 FOR I == 121 TO 5
7121 POKE CL - I ' TM<I>
8121 NEXT I
9121 PRINT "CLOCK IS SET"
100 END

DA, YR, HR, MN, SS"
TM (3) , TM (4) , TM (5)

Once you have set the date and time with this program, you may request it any time
you want. For example, this program line:

10 PRINTTIME$

causes the Computer to print today's date and time.

If you do not set the date and time, the Computer will keep time anyway. However,
the date and time will be set at zero when you first tum on the Computer or reset it.

NOTE: The clock is turned off during cassette operations and at certain other
times. Therefore it will need to be corrected periodically.

VAL (string)

Performs the inverse of the STR$ function: returns the number represented by the
characters in a string argument. The numerical type of the result can be integer,
single precision, or double precision, as determined by the rules for the typing of
constants (See page 104 in this section). For example, if A$=" 12" and 8$ = "34"

then VAL(A$ + "." + 8$) returns the value 12.34. VAL(A$ + "E" + 8$) returns the
value 12E34, that is J2xl034

•

VAL operates a little differently on mixed strings-strings whose values consist of
a number followed by non-numeric characters. In such cases, only the leading
number is used in determining VAL; the non-numeric remainder is ignored.

For example: VAL(" JOO DOLLARS") returns 100.

170

This can be a handy short-cut in examining addresses, for example.

Example Program:

940 REM "WHAT SIDE OF STREET?"
950 REM EVEN= NORTH. ODD= SOUTH
960 INPUT "ADDRESS: NUMBER AND STREET"; AD$
970 C = INT(VAL<AD$)/2) * 2

BASIC

980 IF C = VAL(AD$) THEN PRINT "NORTH SIDE": GOTO 960
990 PRINT "SOUTH SIDE": GOTO 960

RUN the program, entering street addresses like'' 1015 SEVENTH AVE''.

If the string is non-numeric or null, VAL returns a zero.

Note: VAL will not always return the correct value of negative numbers although it
does return the correct value of positive numbers.

171

BASIC

20/ Arrays
An array is simply an ordered list of values. In Model Ill BASIC these values may be
either numbers or strings, depending on how the array is defined or typed. Arrays
provide afast and organized way of handling large amounts of data. To illustrate
the power of arrays, this chapter traces the development of an array to store
checkbook data: check numbers, dates written , and amounts for each check .

In addition, several matrix manipulation subroutines are listed at the end o_fthis
chapter. These sequences will let you add, multiply, transpose, and perform other
operations on arrays.

Note: Throughout this chapter, zero-subscripted elements are generally ignored
for the sake of simplicity. But you should remember they are available and should .
be used for the most efficient use of memory . For example, after DIMA(4), array A

contains 5 elements: A(O), A(IJ, A(2) , A(J), A(4).

For background information on arrays , see Chapter 18, DIM, and Chapter 15
''Arrays''.

A Check-Book Array

Consider the following table of checkbook information:
Check# Date Written

025 1-1-78
026 1-5-78
027 I-7-78
028 1-7-78
029 1-10-78
030 1-15-78

Amount

10.00
39 .95
23.50

149.50
4.90

12.49

Note that every item in the table may be specified simply by reference to two
numbers: the row number and the column number . For example, (row 3, column 3)
refers to the amount 23. 50. Thus the number pair (3 ,3) may be called the ''subscript
address" of the value 23. 50.

Let's set up an array, CK, to correspond to the checkbook information table . Since
the table contains 6 rows and 3 columns, array CK will need two dimensions: one for
row numbers, and one for column numbers. We can picture the array like this:

A(I, I)= 025 A(l,2)= 1.0178 A(l .3) = 10.00

A(6,1)=030 A(6,2) = 1.1578 A(6 ,3) = 12.49

173

Notice that the date information is recorded in the form mm.ddyy . where
mm= month number, dd= day of month, andyy = last two digits of year . Since CK

is a numeric array, we can't store the data with alpha-numeric characters
such as dashes.

Suppose we assign the appropriate values to the array elements. Unless we have
used a DlM statement , the Computer will assume that our array requires a depth of
IO for each dimension . That is, the Computer will set aside memory locations to
hold CK(7, I) , CK (7,2),. .. . CK(10.1). CK(10.2) and CK(10.3l. In this case, we don't
want to set aside this much space, so we use the DIM statement at the beginning of
our program:

Lf!Z'J DI M CK (6, 3)

Now let's add program steps to read the values into the array CK:

50 FOR ROW= 1 TO 6
60 FOR COL= 1 TO 3
70 READ CK<ROW,COL>
B0 NEXT COL, f<Ol,,J
90 DATA 025, 1.0178, 10.00
100 DATA 026, 1.0578, 39.95
110 DATA 027, 1.0778, 23.50
120 DATA 028, 1.0778, 149.50
130 DATA 029, 1.1078, 4.90
140 DATA 030, 1.1578, 12.49

Now that our array is set up, we can begin taking advantage of its built-in structure.
For example, suppose we want to add up all the checks written. Add the following
lines to the program:

150 FOR ROW= 1 TO 6
160 SUM= SUM+ CK(ROW,3)
170 NEXT
180 PRINT "TOTAL OF CHECKS WRITTEN";
190 PRINT USING"$$###.##"; SUM

Now let's add program steps to print out all checks that were written on a given day .

200 PRINT "SEEKING CHECKS WRITTEN ON WHAT DATE (MM.DD YY)";
210 INPUT DT
220 PRINT: PRINT "ANY CHECKS WRITTEN ARE LISTED BELOW:"
230 PRINT "CHECK#", "AMOUNT": PRINT
240 FOR ROW= 1 TO 6
250 IF CKCROW,2) = DT THEN PRINT CK(ROW,1), CK(ROW,3)
260 NEXT

It's easy to generalize our program to handle checkbook information for all 12
months and for years other than 1978.

174

BASIC

All we do is increase the size (or' 'depth'') of each dimension as needed. Let's
assume our checkbook includes check numbers 001 through 300, and we want to
store the entire checkbook record. Just make these changes:

L1(2'.1 DIM Ch (:m0, 3) 'SET UP A 300 BY 3 ARRAY
50 FOR ROW= 1 TO 300

and add DATA lines for check numbers 00 l through 300. You'd probably want to
pack more data onto each DAT A line than we did in the above DAT A lines.

And you'd change all the ROW counter final values:

150 FOR ROW - 1 TO 300
240 FOR ROW= 1 TO 300

Other Types of Arrays

Remember, in Model III BASIC the numberof dimensions an array can have (and
the size or depth of the array), is limited only by the amount of memory available . Also
remember that string arrays can be used. For example, C$(X) would automatically
be interpreted as a string array. And if you use DEFSTR A at the beginning of your
program, any array whose name begins with A would also be a string array. One
obvious application for a string array would be to store text material for access by a
string manipulation program .

112l CL.EAR 1212ll2l
20 DIM TXT1f; (U2))

would set up a string array capable of storing 10 lines of text. 1200 bytes were
CLEARed to allow for 10 sixty-character lines, plus 600 extra bytes for string
manipulation with other string variables.

175

Array/Matrix Manipulation Subroutines

To use this subroutine, your main program must supply values for two variables NI
(number of rows) and N2 (number of columns). Within the subroutine, you can
assign values to the elements in the array row by row by answering the INPUT

statement.

10 FOR ROW= 1 TO N1
20 FOR COL= 1 TO N2
3(2'.t PFUNT "FNTEF! Di-\°T'/.\ FOP 11

; FWl•J;
40 INPUT A(ROW,COL)
~:,(;.1 NEXT COL
6~~1 l\lE X T F<Ol,,J
7(Zt RETUf~N

II .. II SI . , COL

To use this subroutine, your main program must supply values for three variables
Nl (size of dim #1), N2 (size of dim #2) andN3 (size of dim #3). Within the
subroutine, you can assign values to each element of the array using READ and
DATA statements. You must supply Ix J x Kelements in the following order: row by
row for K = 1, row by row for K = 2, row by row for K = 3, and so on for each value
ofN3.

400 REM l~EGlUI RES DATA STMTS.
410 FOR ~\ = 1 TO N:3
420 FOR I ··- 1 TO N1
L~30 FOR J" = 1 TO N·::• ...
'+'+0 READ A<I,JdO
L•50 NEXT ,J' I ' ~\
'+6ilJ l~ETUf~N

Main program supplies values for variables Nl, N2, N3. The subroutine prints the
array.

560 FOR •< = 1 TO N3
570 FOR I ·- 1 TO N1
580 FOR J - 1 TO N2
590 PRINT A(I,,J,.O,
600 NEXT J: PRINT
610 NEXT I : PRINT
620 NEXT •-.::: PRINT
630 RETURN

176

BASIC

Main program supplies values for variables N 1, N2, N3. Within the subroutine,
you can assign values to each element of the array using the INPUT statement.

660 FOR ~\ -·· 1 TO N3
670 PRINT "PAGE" ; ~\
680 FOR l -· 1 TO N1
690 Pl:<INT "INPUT ROW" ; I
700 FOR LT -·· 1 TO N2
710 INPUT A(I,,JdO
720 NEXT .J
730 NEXT I
7Lt0 PRINT: NEXT t\
7~j(J 1:~crui:~N

Multiplication by a Single Variable: Scalar Multiplication (3 Dimensional)

780 FOR h - 1 TO N3
790 FOR J = 1 TO N2
800 FOR I= 1 TO N1
810 B(I,J,h) = A<I,J,h) * X
B20 NEXT I
830 NEXT ._T
840 NEXT I·,
B512l RETUF<N

Multiplies each element in MATRIX A by X and constructs matrix B

Transposition of a Matrix (2 Dimensional)

880 FOR I= 1 TO N1
890 FOR J = 1 TO N2
900 B<J,I) = A<I,J)
910 NEXT J.
920 NEXT I
C/3~:I 11ETUHN

Transposes matrix A into matrix B

177

..
'

--- TRS-80 MODEL Ill

Matrix Addition (3 Dimensional)

960 FORK - 1 TO N3
970 FOR J = 1 TO N2
9 80 FOR I = 1 TO Nl
990 C (I , J , ~-;;) :::: A (I , J. , ~~:) + B (I , ,J , K)
1000 NEXT I
1 01 0 NEX T ,J
1(2t?0 NE XT K
1QU 0 RETURN

Array Element-wise Multiplication (3 Dimensional)

1060 FORK - 1 TO N3
1070 FOR J = 1 TO N2
1080 FOR I= 1 TO N1
1090 C<I , J,K) = A<I , J,K) * 8(1,J,K)
1100 NEXT I
1110 NEXT .J
1120 NEXT K
1 :l :m f<ETUPN

Multiplies each element in A times its corresponding element in B.

Matrix Multiplication (2 Dimensional)
1160 FOR I= 1 TO N1
1170 FOR J = 1 TO N2
:I. l Hf/I C (I , ,.T) ::: V
1190 FORK= 1 TO N3
1200 C(I,J) = C(l,J) + A(I,K) * B(K,J)
1:210 NEXT I·-(
12 ~?0 NEXT J
1230 NEXT I
121.1.(1 RETUF<N

A must be an NI by N3 matrix; B must be an N3 by N2 matrix . The resultant matrix
C will be an NI andN2 matrix. A, B, and C must be dimensioned accordingly.

178

BASIC

21 / Arithmetic Functions
Model Ill BASIC offers a wide variety o.f intrinsic (''built-in'')f'unctionsfor
performing arithmetic and special operations. The special-operationfunctions are
described in the next chapter.

All the common math functions described in this chapter return single-precision
values accurate to six decimal places. ABS, FIX and INT return values whose
precision depends on the precision of the argument.

The conversion functions (CINT, CDBL, etc.) return values whose precision depends
on the particular Junction. Trig functions use or return radians, not degrees. A
radian-degree conversion is given for each of the functions.

For all the functions, the argument must be enclosed in parentheses. The argument
may be either a numeric variable, expression or constant.

Functions described in this chapter:

ABS cos INT SGN
ATN CSNG LOG SIN
CDBL EXP RANDOM SOR
CINT FIX RND TAN

ABS(x)

Returns the absolute value of the argument. ABS(X) = X for X greater than or equal to
zero, and ABS(X) = - X for X less than zero.

100 IF ABS(X)<1 E- 6 PRINT "TOO SMALL"

ATN(x)

Returns the arctangent (in radians) of the argument; that is, ATN(X) returns "the
angle whose tangent is x''. To get arctangent in degrees, multiply ATN(X) by
57.29578.

100Y=ATN(B/C)

179

CDBL(x)

Returns a double-precision representation of the argument. The value returned will
contain 17 digits, but only the digits contained in the argument will be significant.

CDBL may be useful when you want to force an operation to be done in
double-precision , even though the operands are single precision or even integers .
For example CDBL (1%)/1% will return a fraction with 17 digits of precision.

100 FOR 1% = 1 TO25: PRINT 1/CDBL(I¾), : NEXT

CINT(x)

Returns the largest integer not greater than the argument . For example , CINT (1.5)
returns I ; CINT(- 1.5) returns - 2. For the ClNT function , the argument must be in
the range - 32768 to + 32767. The result is stored internally as a two-byte integer.

CINT might be used to speed up an operation involving single or double-precision
operands without losing the precision of the operands (assuming you 're only
interested in an integer result).

100K% = CINT(X#) + CINT(Y#)

COS(x)

Returns the cosine of the argument (argument must be in radians). To obtain the
cosine of X when Xis in degrees, use COS(X* .01745329).

100 Y = COS(X + 3.3)

CSNG(x)

Returns a single-precision representation of the argument. When the argument is a
double-precision value, it is returned as six significant digits with '' 4/5 rounding''
in the least significant digit. So CSNG(. 6666666666666667) is returned as . 666667;
CSNG(.3333333333333333) is returned as .333333.

100 PRINTCSNG (A#+ B#)

180

BASIC

EXP(x)

Returns the' 'natural exponential'' ofx, that is eX. This is the inverse of the LOG
function, so X = EXP(LOG(X)).

100 PRINT EXP(- X)

FIX(x)

Returns a truncated representation of the argument. All digits to the right of the
decimal point are simply chopped off, so the resultant value is an integer. For
non-negative X, FIX(X) = INT(X). For negative values ofx, FIX(X) = INT(X) + 1. For
example, FIX(2.2) returns 2, and FIX(- 2.2) returns - 2.

100 Y = ABS(A - FIX(A))

This statement gives Y the value of the fractional portion of A.

INT(x)

Returns an integer representation of the argument, using the largest whole number
that is not greater than the argument. Argument is not limited to the range - 32768
to + 32767. The result is stored internally as a single-precision whole number.
INT(2.5) returns 2; INT(- 2.5) returns - 3; and INT(IOOOIOI .23) returns
1000101.

100 Z = INT(A *100 + .5)/100

Gives z the value of A rounded to two decimal places (for non-negative A).

LOG(x)

Returns the natural logarithm of the argument, that is, loge (argument). This is the
inverse of the EXP function, so x = LOG(EXP(X)). To find the logarithm of a number
to another base b, use the formula LOGb (X) = LOGe(x)/LOGe(b).For example,
LOG(32767)/LOG(2) returns the logarithm to base 2 of 32767.

100 PRINT LOG(3.3*X)

181

RANDOM

RANDOM is actually a complete statement rather than a function. It reseeds the
random number generator. If a program uses the RND function, you may want to put
RANDOM at the beginning of the program. This will ensure that you get an
unpredictable sequence of pseudo-random numbers each time you turn on the
Computer, load the program, and run it.

:I. i?.l i:~f.:1NDOM
:?t1 PHI NT m,m ((ZI),

3(Zi GOTO 2(Zt 'DO LINE 10 JUST ONCE

RND(x)

Generates a pseudo-random number using the current pseudo-random '' seed
number'' (generated internally and not accessible to user). RND may be used to
produce random numbers between 0 and I, or random integers greater than 0,
depending on the argument.

RND(0) returns a single-precision value between 0 and 1. RND(integer) returns an
integer between 1 and integer inclusive (integer must be positive and less than
32768). For example, RND(55) returns a pseudo-random integer greater than zero
and less than 56. RND(55.5) returns a number in the same range, because RND uses
the INTegervalue of the argument.

100 X RND(2) :ONXGOTO200,300

SGN(x)

The "sign" function: returns - 1 for X negative, 0 for X zero, and + 1 for X
positive.

100 ON SGN(X) + 2 GOTO 200,300,400

182

BASIC

SIN(x)

Returns the sine of the argument (argument must be in radians). To obtain the sine
ofx when Xis in degrees, use SIN(X* .01745329).

100 PRINT SIN(A*B-8)

SQR(x)

Returns the square root of the argument. SQR(X) is the same as X [(112), only faster.

100 Y = SQR(X[2 - H[2)

TAN(x)

Returns the tangent of the argument (argument must be in radians). To obtain the
tangent ofx when Xis in degrees, use TAN(X* .01745329).

100 Z=TAN(2*A)

NOTE: A great many other functions may be created using the above functions.
See Appendix E, ''Derived Functions''.

183

BASIC

22 I Special Features
Model Ill BASIC offers some unusua/fimctions and operations that deserve ,1pecial
highlighting. Some may seem highly :,pecialized; as you learn more about
programming and begin to experiment with machine-language routines, they will
take on more significance. Otherfimctions in the chapter are of obvious benefit and
will be used often (for example, the graphicsfimctions).

Functions, statements and operators described in this chapter:

Graphics:

SET
RESET
CLS
POINT

SET(x,y)

Error-Routine
Functions:

ERL
ERR

Other Functions
and Statements:

INP
MEM

OUT
PEEK
POKE
POS
USR
VARPTR

Tums on the graphics block at the location specified by the coordinates x and y. For
graphics purposes, the Display is divided up into a 128 (horizontal) by 48 (vertical)
grid . Thex-coordinates are numbered from left to right, 0 to 127. They-coordinates
are numbered from top to bottom, 0 to 4 7. Therefore the point at (0,0) is in the
extreme upper left of the Display, while the point at (127 ,4 7) is in the extreme
lower right corner. See the Video Display Worksheet in the Appendix.

The arguments x and y may be numeric constants, variables or expressions. They
need not be integer values, because SET(x,y) uses the INTeger portion of x andy. SET
(x,y) is valid for:

0< =x<I28
0<=y<48

185

Examples:

100 SET (RND(128)-1,RND(48)-1)

Lights up a random point on the Display.

100 INPUT X,Y: SET (X,Y)

RUN to see where the blocks are.

RESET(x,y)
Tums off a graphics block at the location specified by the coordinates x and y. This
function has the same limits and parameters as SET(x,y).

200 RESET (X,3)

CLS

''Clear-Screen'' -turns off all the graphics blocks on the Display and moves the
cursor to the upper left corner. This wipes out alphanumeric characters as well as
graphics blocks. CLS is very useful whenever you want to present an attractive
Display output.

10 CL.S
20 SET (RND (1 :?B) -·· 1 , RND (L~B) --1)
30 GOTO 20

POINT(x,y)
Tests whether the specified graphics block is ''on'' or ''off''. If the block is ''on''
(that is, if it has been SET), then POINT returns a binary True (- 1 in Model III
BASIC). If the block is ''off'', POINT returns a binary False (0 in Model III BASIC). Typically,
the POINT test is put inside an IF-THEN statement.

100 SET (50, 28): IF POINT (50,28) THEN PRINT "ON" ELSE PRINT "OFF"

This line will always print the message, "ON", because POINT(50,28) will return a
binary True, so that execution proceeds to the THEN clause. If the test failed, POINT

would return a binary False, causing execution to jump to the ELSE statement.

186

BASIC

ERL
Returns the line number in which an error has occurred. This function is primarily
used inside an error-handling routine accessed by an ON ERROR GOTO statement. If
no error has occurred when ERL is called, line number 0 is returned. However, if an
error has occurred since power-up, ERL returns the line number in which the error
occurred. If error occurred in direct mode, 65535 is returned (largest number
representable in two bytes).

Example Program using ERL

10 CLEAR 10
20 ON ERROR GOTO 1000
30 INPUT "ENTER YOUR MESSAGE"; M$
40 INPUT "NOW ENTER A NUMBER"; N
50 Z = 1 /N
60 PRINT "INPUT VALUES OKAY--TRY AGAIN TO CAUSE AN ERROR"
70 GOTO 30
1000 IF ERL=30 AND (ERR/2 + 1 - 14) THEN 1040
1010 IF ERL=40 AND (ERR/2 + 1 - 6) THEN 1050
1020 IF ERL=50 AND (ERR/2 + 1 - 11) THEN 1060
1030 ON ERROR GOTO 0: RESUME
1040 PRINT "MESSAGE TOO LONG--10 LETTERS MAXIMUM": RESUME
1050 PRINT "NUMBER TOO LARGE": RESUME
1060 PRINT "DIVISION BY ZERO IN LINE 50--ENTER NON-·ZERO NUMBER"
1070 RESUME '+0

RUN the program. Try entering a long message; try entering zero when the program
asks for a number. Note that ERL is used in line 1000 to determine where the error
occurred so that appropriate action may be taken.

ERR/2+1

Similar to ERL, except ERR returns a value related to the code of the error rather
than the line in which the error occurred. It is commonly used inside an error
handling routine accessed by an ON ERROR GOTO statement. See Appendix B,
'' Error Codes. ''

ERR/2 + I = true error code
(true error code- 1)*2 = ERR

Sample Program

See ERL.

187

INP(port)

Returns a byte-value from the specified port. There are 256 ports, numbered 0-255.
For example

100 PRINT INP(50)

inputs a byte from port 50 and prints the decimal value of the byte.

You do not need to access the Z-80 ports to make full use of the TRS-80.

MEM

Returns the number of unused and unprotected bytes in memory. This function may
be used in the Immediate Mode to see how much space a resident program takes up ;
or it may be used inside the program to avert OM (Out of Memory) errors by
allocating less string space, DIMensioning smaller array sizes, etc. MEM requires no
argument.

Example:

100 IF MEM < 80 THEN 900

Enter the command PRINT MEM (in the Immediate Mode) to find out the amount of
memory not being used to store programs, variables, strings, stack, or reserved for
object-files .

188

BASIC

OUT port, value

Outputs a byte value to the specified port. OUT is not a function but a statement
complete in itself. It requires two arguments separated by a comma (no
parenthesis): the port destination and the byte value to be sent.
port and value are in the range o to 255.

PEEK(address)

Returns the value stored at the specified byte address (in decimal form). To use this
function, you'll need to refer to two sections of the Appendix: the Memory Map (so
you '11 know where to PEEK) and the Table of Function ASCII and Graphics Codes
(so you'll know what the values represent).

If you' re using PEEK to examine object files, you' II also need a microprocessor
instruction set manual (one is included with the TRS-80 Editor/ Assembler
Instruction Manual).

PEEK is valuable for linking machine language routines with Model III BASIC
programs. The machine language routine can store information in a certain memory
location, and PEEK may be used inside your BASIC program to retrieve the
information. For example,

A= PEEK (17999)

returns the value stored at location 17999 and assigns that value to the variable A.

Peek may also be used to retrieve information stored with a POKE statement. Using
PEEK and POKE allows you to set up very compact, byte-oriented storage systems.
Refer to the Memory Map in the Appendix to determine the appropriate locations
for this type of storage. See POKE, USR.

POKE address, value

Loads a value into a specified memory location. POKE is not a function but a
statement complete in itself. It requires two arguments: a byte address (in decimal
form) and a value. The value must be between O and 255 inclusive. Refer to the
Memory Map in the Appendix to see which addresses you'd like to POKE.

To POKE (or PEEK) an address above 32767, use the following formula: - 1 *
(65536-desired address) = POKE OR PEEK address. For example, to POKE into
address 32769, usePOKE -32767, value.

189

r■.;;;iji'iiii-

lllli TRS-80 MODEL Ill
-

Since the Video Display is memory-mapped, you can output to the Display directly
by POKEing ASCII data into Video RAM. Video RAM is from 15360 to 16383.
Example:

:I. {t.j C L.. \:3
20 FORM= 15360 TO 16383
3C;j POl··<E 1v1, :I. 9 :I.
t:1-0 NEXT M
'.:i(!.l GOTO '.::i(ZJ

RUN the program to see how fast the screen is ''painted'' white.

Since POKE can be used to store information anywhere in memory, it is very
important when we do our graphics to stay in the range for display locations. If we
POKE outside this range, we may store the byte in a critical place. We could be
POKEing into our program, or even in worse places like the stack. Indiscriminate
POKEing can be disastrous. You might have to reset or power off and start over
again. Unless you know where you are POKEing-don't.

See PEEK, USR, SET, and CHR$ for background material. Also see the Owners
Section for examples on special uses of POKE.

POS(x)

Returns a number from Oto 63 indicating the current cursor position on the Display.
Requires a' 'dummy argument'' (any numeric expression).

100 PRINTTAB(40); POS(0)

prints 40 at position 40. (Note that a blank is inserted before the '' 4'' to
accommodate the sign; therefore the'' 4'' is actually at position 41.) The ''0'' in
'' POS(O)'' is the dummy argument.

190

USR(x)
This function lets you call a machine-language subroutine and then continue
execution of your BASIC program.

BASIC

''Machine language'' is the low-level language used internally by your Computer.
It consists ofZ-80 microprocessor instructions . Machine-language subroutines are
useful for special applications (things you can't do in BASIC) and simply because
they can do things very fast (like white-out the Display) .

Writing such routines requires familiarity with assembly-language programming
and with the Z-80 instruction set. For more information on this subject, see the
Radio Shack book, TRS-80Assembly-Language Programming, by William Barden,
Jr., and the instruction manual for Radio Shack 's EDITOR-ASSEMBLER (26-2002).

Getting the USR routine into memory

l . You should first reserve the area in high memory where the routine will be
located. This is done immediately after power-up by answering the MEMORY

SIZE? question with the address preceding the start address of your USR
routine. For example, if your routine starts at 32700, then type 32699 in
response to MEMORY SIZE?.

2. Then load the routine into memory.
A. Ifitis stored on tape in the SYSTEM format (created with

EDITOR-ASSEMBLER) , you must load it via the SYSTEM command, as
described in Chapter 2. After the tape has loaded press (BREAK) to return to
the BASIC immediate mode.

B . If it is a short routine , you may simply want to POKE it into high memory.

Telling BASIC where the USR routine starts

Before you can make the USR call, you have to tell BASIC the entry address to the
routine. Simply POKE the two-byte address into memory locations l 6526-16527:
least significant byte (LSB) into 16526, most significant byte (MSB) into 16527 .

For example, if the entry point is at 32700:

32700 decimal = 7FBC hexadecimal
LSB = BC hexadecimal = 188 decimal
MSB = 7F hexadecimal = 127 decimal

So use the statements:
POKE 16526 , 188

POKE 16527 , 127

to tell BASIC that the USR routine entry is at 32700.

191

Making the USR call

At the point in your BASIC program where you want to call the subroutine , insert a
statement like

X = USR(N)
where N can be an expression and must have a value between - 32768 and
+ 32767 inclusive. This argument, N, can be used to pass a value to your routine
(see below) or you can simply consider it a dummy argument and not use it at all.

When BASIC encounters your X= USR(N) statement , it will branch to the address
stored at 16526-16527. At the point in your USR routine where you want to return
to the BASIC program, insert a simple RET instruction - unless you want to return a
value to BASIC, in which case, see below.

Passing an argument to the USR routine

If you want to pass the USR(N) argument to your routine, then include the following
CALL instruction at the beginning of your USR routine.:

CALLOA?FH
This loads the argument N into the HLregister pair as a two-byte signed integer.

Returning an argument from the USR routine

To return an integer value to the USR(N) function, load the value (a two-byte signed
integer) into HL and place the following jump instruction at the end of your routine:

JP OA9AH

Control will pass back to your program, and the integer in HL will replace USR(N).
For example, if the call was

X=USR(N)

Then X will be given the value in HL.

USR routines are automatically allocated up to 8 stack levels or 16 bytes (a high and
low memory byte for each stack level). If you need more stack space, you can save
the BASIC stack pointer and set up your own stack. See SYSTEM, PEEK, and POKE.

Also see the Technical Information Chapter in the Owners Section.

192

BASIC

V ARPTR (variable name)

Returns an address-value which will help you locate where the variable name and
its value are stored in memory. If the variable you specify has not been assigned a
value, an FC error will occur when this function is called.

If v ARPTR(integer variable) returns address K:
Address K contains the least significant byte (LSB) of 2-byte integer.
Address K + 1 contains the most significant byte (MSB) of integer.

You can display these bytes (two's complement decimal representation) by
executing a PRINT PEEK (K) and a PRINT PEEK (K + 1).

IfYARPTR(single precision variable) returns address K:
(K)* = LSB of value
(K + 1) = Next most significant byte (Next MSB)
(K + 2) = MSB with hidden (implied) leading one. Most significant

bit is the sign of the number
(K + 3) exponent of value excess 128 (128 is added to the exponent).

If V ARPTR(double precision variable) returns K:
(K) = LSB of value
(K + 1) = NextMSB
(K + ...)=Next MSB
(K + 6) = MSB with hidden (implied) leading one. Most significant

bit is the sign of the number.
(K + 7) = exponent of value excess 128 (128 is added to the exponent).

For single and double precision values, the number is stored in normalized
exponential form, so that a decimal is assumed before the MSB. 128 is added to the
exponent. Furthermore, the high bit of MSB is used as a sign bit. It is set to O if the
number is positive or to 1 if the number is negative. See examples below.

You can display these bytes by executing the appropriate PRINT PEEK(x) where x =
the address you want displayed . Remember, the result will be the decimal
representation of byte, with bit 7 (MSB) used as a sign bit. The number will be in
normalized exponential form with the decimal assumed before the MSB. 128 is
added to the exponent,

If V ARPTR(string variable) returns K:
(K) = length of string
(K + 1) = LSB of string value starting address
(K + 2) = MSB of string value starting address
* (K) signifies "contents of address K"

The address will probably be in high RAM where string storage space has been set
aside. But, if your string variable is a constant (a string literal), then it will point to
the area of memory where the program line with the constant is stored, in the
program buffer area. Thus, program statements like A$= '"HELLO'' do not use string
storage space .

193

For all of the above variables, addresses (K - I) and (K - 2) will store the TRS-80
Character Code for the variable name. Address (K - 3) will contain a descriptor code
that tells the Computer what the variable type is. Integer is 02; single precision is
04; double precision is 08; and string is 03.

V ARPTR(array variable) will return the address for the first byte of that element in
the array. The element will consist of 2 bytes if it is an integer array; 3 bytes if it is a
string array; 4 bytes if it is a single precision array; and 8 bytes if it is a double
precision array.

The first element in the array is preceded by:
l. A sequence of two bytes per dimension, each two-byte pair indicating the

''depth'' of each respective dimension.
2. A single byte indicating the total number of dimensions in the array.
3. A two-byte pair indicating the total number of elements in the array.
4. A two-byte pair containing the ASCII-coded array name.
5. A one-byte type-descriptor (02 = Integer, 03 = String, 04 = Single-Precision,

08 = Double-Precision).

Item (l) immediately precedes the first element, Item (2) precedes Item (l),
and so on.

The elements of the array are stored sequentially with the first dimension-subscripts
varying ''fastest'', then the second, etc.

Examples:

A! = 2 will be stored as follows
2 = 10 Binary, represented as . l E2 = . l x 22

So exponent of A is 128 + 2 = 130 (called excess 128)
MSB of A is 10000000;
however, the high bit is changed to zero since the value is positive (called hidden or
imp lied leading one).
So A! is stored as

Exponent (K + 3)
130

A!= - .5 will be stored as
Exponent (K + 3)

128

A! = 7 will be stored as
Exponent (K + 3)

131

A!= -7:
Exponent (K + 3)

131

MSB (K+2)
0

MSB (K + 2)
128

MSB (K+2)
96

MSB (K+2)
224

Next MSB (K + l)
0

Next MSB (K + l)
0

Next MSB (K + l)
0

Next MSB (K + l)
0

LSB (K)
0

LSB (K)
0

LSB (K)
0

LSB (K)
0

Zero is simply stored as a zero-exponent. The other bytes are insignificant.

194

BASIC

23/Editing
You have probably found it is very time consuming to retype long program lines,
simply because of a typo, or maybe just to make a small change .

Model Ill editing features eliminate much of this extra work . In fact , it's .10 easy to
alter program lines, you'll probably want to experiment with multi-statement lines ,
complex expressions, etc .

Commands, subcommands, and special function keys described in this chapter:

EDIT

CEHllID
n(SPACEBAR)
n 8
(SHIFT)(D

EDIT line number

n([)
11([)
n([)c
n(K)c

This command puts you in the Edit Mode. You must specify which line you wish to
edit, in one of two ways:

EDIT line-number

or

EDIT.

Lets you edit the specified line .
If line number is not in use,
an FC error occurs

Lets you edit the current pro­
gram line - last line entered or
altered or in which an error has
occurred.

For example, type in and (ENTER) the following line:

100 FOR I = I TO 10 STEP .5 : PRINT I, I 2, I [3 : NEXT
'\

This line will be used in exercising all the Edit subcommands described below .

Now type EDIT 100 and hit (ENTER). The Computer will display:

100■

You are now in the Edit Mode and may begin editing line 100.

195

NOTE: EDITing a program line automatically clears all variable values and
eliminates pending FOR/NEXT and GOSUB operations. If BASIC encounters a syntax
error during program execution, it will automatically put you in the EDIT mode.
Before EDITing the line, you may want to examine current variable values. In this
case, you must type Q as your first EDIT command. This will return you to the
command mode, where you may examine variable values. Any other EDIT
command (typing E, pressing ENTER. etc.) will clear out all variables.

(ENTER)key
Hitting (ENTER) while in the Edit Mode causes the Computer to record all the
changes you've made (if any) in the current line, and returns you to the Command
Mode.

n(SPACEBAR)
In the Edit Mode, hitting the Space-bar moves the cursor over one space to the right
and displays any character stored in the preceding position. For example, using line
100 entered above, put the Computer in the Edit Mode so the Display shows:

100 ■

Now hit the Space-Bar. The cursor will move over one space, and the first character
of the program line will be displayed. If this character was a blank, then a blank will
be displayed. Hit the Space-Bar until you reach the first non-blank character:

100F■

is displayed. To move over more than one space at a time, hit the desired number of
spaces first, and then hit the space-bar. For example, type 5 and hit Space-bar, and
the display will show something like this (may vary depending on how many blanks
you inserted in the line):

100FOR I= ■

Now type 8 and hit the Space-bar. The cursor will move over 8 spaces to the right,
and 8 more characters will be displayed.

196

BASIC

n 8
Moves the cursor to the left by n spaces. If no number n is specified, the cursor
moves back one space. When the cursor moves to the left, all characters in its
'' path'' are erased from the display , but they are not deleted from the program
line. Using this in conjunction with Dor Kore can give misleading Video Displays
of your program lines. So, be careful using it! For example, assuming you've used
nSpace-Bar so that the Display shows:

100 FOR I= 1 TO 10 ■

type 8 and hit the (3key. The display will show something like this:

100FOR I= ■

(SHIFT) CD

(will vary depending on number of blanks in
your line 100)

Hitting SHIFT and(I)keys together effects an escape from any of the Insert
subcommands: X, I and H . After escaping from an Insert subcommand, you'll still
be in the Edit Mode, and the cursor will remain in its current position. (Hitting
(ENTER) is another way to exit these Insert subcommands).

L (List Line)

When the Computer is in the Edit Mode, and is not currently executing one of the
subcommands below , hitting L causes the remainder of the program line to be
displayed. The cursor drops down to the next line of the Display, reprints the
current line number, and moves to the first position of the line. For example, when
the Display shows

100 ■

hit L (without hitting (ENTER) key) and line I 00 will be displayed:

100 FOR I= 1 TO 10 STEP .5: PRINT I, I [2, I [3 : NEXT
100 ■

This lets you look at the line in its current form while you ' re doing the editing.

197

-- TRS-80 MODEL Ill

X (Extend Line)

Causes the rest of the current line to be displayed, moves cursor to end of line, and
puts Computer in the Insert subcommand mode so you can add material to the end
of the line. For example, using line 100, when the Display shows

100 ■

hit X (without hitting (ENTER))and the entire line will be displayed; notice that the
cursor now follows the last character on the line:

100FOR I= 1 TO 10STEP .5: PRINTI, I [2, I [3: NEXT■

We can now add another statement to the line , or delete material from the line by
using the CX) key . For example , type :PRINT''DONE'' at the end of the line . Now hit
(ENTER). If you now type LIST 100, the Display should show something like this:

100 FOR 1 = 1 TO 10 STEP .5: PRINT 1, 1 [2, 1 [3:NEXT:PRINT "DONE"

I (Insert)

Allows you to insert material beginning at the current cursor position on the line.
(Hitting CD will actually delete material from the line in this mode.) For example,
type and (ENTER) the EDIT JOO command. then use the Space Bar to move over to the
decimal point in line 100. The Display will show:

100 FOR I= 1 TO 10 STEP. ■

Suppose you want to change the increment from .5 to .25. Hit the I key (don't hit
(ENTER)) and the Computer will now let you insert material at the current position.
Now hit 2 so the Display shows:

100 FOR I= 1 TO 10 STEP .2 ■

You've made the necessary change, so hit (SHIFT) CD to escape from the Insert
Subcommand . Now hit L key to display remainder of line and move cursor back to
the beginning of the line:

100 FOR I= 1TO10 STEP .25: PRINT I, I [2, I [3: NEXT: PRINT "DONE"
100 ■

You can also exit the Insert subcommand and save all changes by hitting (ENTER) .
This will return you to Command mode.

198

BASIC

A (Cancel and Start Again)

Moves the cursor back to the beginning of the program line and cancels editing
changes already made. For example, if you have added, deleted, or changed
something in a line, and you wish to go back to the beginning of the line and cancel
the changes already made: first hit SHIFT(!) (to escape from any subcommand you
may be executing); then hit A. (The cursor will drop down to the next line, display
the line number and move to the first program character.)

E (Exit)

Causes Computer to end editing and save all changes made. You must be in Edit
Mode, not executing any subcommand, when you hit E to end editing.

Q(Quit)

Tells Computer to end editing and cancel all changes made in the current editing
session. If you've decided not to change the line, type Q to cancel changes and leave
Edit Mode.

H(Hack)

Tells Computer to delete remainder of line and lets you insert material at the current
cursor position. Hitting OD will actually delete a character from the line in this
mode. For example, using line 100 listed above, enter the Edit Mode and space
over to the last statement, PRINT"DONE' '. Suppose you wish to delete this statement
and insert an END statement. Display will show:

100 FOR I= 1 TO 10 STEP .25: PRINT I, I [2, I [3: NEXT:■

Now type Hand then type END. Hit (ENTER) key. List the line:

100 FOR I= 1 TO 10STEP .25: PRINTI, I [2, I [3 :NEXT: END

should be displayed.

199

nD (Delete)

Tells Computer to delete the specified number n characters to the right of the
cursor. The deleted characters will be enclosed in exclamation marks to show you
which characters were affected. For example, using line 100, space over to the
PRINT command statement:

100 FOR I= 1 TO 10 STEP .25 : ■

Now type 19D. This tells the Computer to delete 19 characters to the right of the
cursor. The display should show something like this:

100 FOR I= 1 TO 10 STEP .25: !PRINT I, I I 2, I [3 :! ■

When you list the complete line, you'll see that the PRINT statement has been
deleted.

nC(Change)

Tells the Computer to let you change the specified number of characters beginning
at the current cursor position. If you type C without a preceding number, the
Computer assumes you want to change one character. When you have entered n
number of characters, the Computer returns you to the Edit Mode (so you 're not in
the nC Subcommand). For example, using line 100, suppose you want to change
the final value of the FOR-NEXT loop, from" 10" to" 15". In the Edit Mode, space
over to just before the "0" in " 10" .

100 FOR I= 1 TO 1 ■

Now type C. Computer will assume you want to change just one character. Type 5,
then hit L. When you list the line, you'll see that the change has been made.

100 FOR 1 = 1 TO 15STEP .25: NEXT: END

would be the current line if you've followed the editing sequence in this chapter.

The 8does not work as a backspace under the C command in Edit mode. Instead, it
replaces the character you want to change with a backspace. So it should not be
used. If you make a mistake while typing in a change, Edit the line again to correct
it, instead of using 8 .

200

BASIC

nSc (Search)

Tells the Computer to search for the nth occurrence of the character c, and move the
cursor to that position. If you don't specify a value for n, the Computer will search
for the first occurrence of the specified character. If character c is not found, cursor
goes to the end of the line. Note: The Computer only searches through characters to
the right of the cursor.

For example, using the current form of line 100, type EDIT 100 ((ENTER)) and then
hit 2S: . This tells the Computer to search for the second occurrence of the colon
character. Display should show:

100 FOR I= 1 TO 15 STEP .25: NEXT■

You may now execute one of the subcommands beginning at the current cursor
position. For example, suppose you want to add the counter variable after the NEXT

statement. Type I to enter the Insert subcommand, then type the variable name, I.
That's all you want to insert, so hit SHIFT CD to escape from the Insert subcommand.
The next time you list the line, it should appear as:

100 FOR I= 1 TO 15 STEP .25: NEXT I: END

nKc (Kill)

Tells the Computer to delete all characters up to the nth occurrence of character c,
and move the cursor to that position. For example, using the current version of line
100, suppose we want to delete the entire line up to the END statement. Type EDIT

100 ((ENTER)), and then type 2K: . This tells the Computer to delete all characters up
to the 2nd occurrence of the colon. Display should show:

100 !FOR I= 1 TO 15STEP .25: NEXT I! ■

The second colon still needs to be deleted, so type D. The Display will now show:

100 !FOR I= 1 TO 15 STEP .25: NEXT I!!:! ■

Now hit (ENTER) and type LIST 100 ((ENTER)).

Line 100 should look something like this:

100 END

201

A I Model III Summary
Special Characters and Abbreviations

Command
Mode

8

Execute
Mode

(SHIFT)@

(BREAK)

(ENTER)

Function

Return carriage and interpret command

Cursor backspace and delete last character typed

Cursor to beginning of line; erase line

Linefeed

Statement delimiter; use between statements
on same logical line

Move cursor to next tab stop. Tab stops are at
positions o, 8, 16, 24, 32, 48, and 56.

Convert display to 32 characters per line

Clear Display and convert to 64 characters per line

Function

Pause in execution; freeze display during LIST

Stop execution

Interpret data entered from Keyboard with
INPUT statement

Abbreviations Function

? Use in place of PRINT.

Use in place of :REM

''current line''; use in place ofline number with
LIST, EDIT, etc.

APPENDIX

To output a control character, press (SHIFT) then (D; while holding down both keys,
press the key for which a control character is desired. For example, to key a control
-Zpress:

Note: You must use lefthand (SHIFT) key.

205

Type Declaration Characters

Character Type

$ String

% Integer

Single-Precision

Double-Precision

D Double-Precision
(exponential notation)

E Single-Precision
(exponential notation)

Arithmetic Operators

+

*

add

subtract

multiply

divide

Examples

A$,ZZ$

A1%,SUM%

B!, NI!

A# , 1/3#

1 .23456789D-12

1 .23456E + 30

[exponentiate (e.g. , 2 [3 = 8) Press CD to generate"[" .

String Operator

+ concatenate (string together)

Relational Operators

Symbol

<
>

< =or = <
> =or =>
<> or > <

206

in numeric expressions

is less than
is greater than
is equal to
is less than or equal to
is greater than or equal to
does not equal

"2" + "2" = "22"

in string expressions

precedes
follows
equals
precedes or equals
follows or equals
does not equal

Page

107

107

106

106

106

106

Page

113

I I 3

113

113

I I 3

Page

I 16

Page

117
I 17
117
117
117
117

Order of Operations

[or ♦ (Exponentiation) Press (I) to enter this character.

(Negation)

* ,/
+,

Relational operators

NOT

AND

OR

Precedence order is from left to right for operators on the same level

Commands

Command/Function

AUTO mm, nn

CLEAR

Tum on automatic line
numbering beginning
with mm, using
increment of nn.

Set numeric variables
to zero, strings to null.

CLEARn

CLOAD

Same as CLEAR but also
sets aside n bytes for strings.

Load a BASIC

program from tape

CLOAD?

CONT

Verifies BASIC

program on tape
to one in memory

Continue after BREAK or
STOP in execution.

Examples

AUTO
AUTO10
AUTO5,5
AUTO.,10

CLEAR

CLEAR500
CLEARMEM/4

CLOAD"A"

CLOAD?"A"

CONT

APPENDIX

Page

120

120

120

120

120

120

120

120

120

Page

125

126

126

127

127

207

- .· ..

CSAVE

Save a BASIC CSAVE"A" 127
program on tape

DELETE mm-nn
Delete program line from DELETE100 128
line mm to line nn . DELETE 10-50

DELETE.

EDIT mm
Enter Edit Mode for line EDIT 100 128
mm . See Edit Mode Sub- EDIT.
commands below.

LIST mm-nn
List all program lines from LIST 128
mmtonn. LIST30-60

LIST30-
LIST-90
LIST .

LLISTmm-nn
Lists all program LLIST 129
lines from mm to LLIST30-60
nn on the line
printer.

NEW

Delete entire program and NEW 129
reset all variables, pointers
etc .

RUNmm

Execute program beginning RUN 130
at lowest numbered line or RUN55

mm if specified.

SYSTEM SYSTEM
Enter Monitor Mode for 130
loading of machine-language
file from cassette .

TROFF

Turn off Trace TROFF 131

TRON

Turn on Trace TRON I 3 I

208

APPENDIX

Edit Mode Subcommands and Functions

Sub-
Command

(ENTER)

(filfilI) (I)

n(SPACEBAR)

n8

OJ

00

CD

rn
m
(]J

CID

n(]J

n©

n(]Jc

nCK)c

Function

End editing and return to Command Mode.

Escape from x. I, and H subcommands and remain in Edit Mode.

Move cursor n spaces to right.

Move cursor n spaces to left.

List remainder of program line and return to beginning of line .

List remainder of program line , move cursor to end of line,
and start Insert subcommand.

Insert the following sequence of characters at current cursor
position; use Escape to exit this subcommand.

Cancel changes and return cursor to beginning of line

End editing, save all changes and return to Command Mode .

End editing, cancel all changes made and return to
Command Mode .

Delete remainder of line and insert following sequence of
characters; use Escape to exit this subcommand.

Delete specified number of characters n beginning at current
cursor position.

Change (or replace) the specified number of characters n
using the next n characters entered.

Move cursor to nth occurrence of character c, counting
from current cursor position.

Delete all characters from current cursor position up to nth
occurrence of character c, counting from current cursor
posi tion.

Page

196

197

196

197

197

198

198

199

199

199

199

200

200

201

202

209

Input/Output Statements

Statement/Function Examples Page

PRINT exp*
Output to Display the value of PRINT A$ 133
exp. Exp may be a numeric PRINTX + 3
or string expression or PRINT"D = " D
constant , or a list of such items.

Comma serves as a PRINT PRINT 1,2,3,4
modifier. Causes cursor to PRINT'T, "2"
advance to next print zone. PRINT 1,,2

Semi-colon serves as a PRINT PRINT X;" = ANSWER"
modifier. Inserts a space PRINTX;Y;Z
after a numeric item in PRINT PRINT "ANSWER IS";
list. Inserts no space after a
string item. At end of PRINT
list , suppresses the automatic
carriage return .

PRINT@n
PRINT modifier; begin PRINT (ci 540, "CENTER" 134
PRI NTing at specified PRINT (cc N + 3,X*3
display position n.

PRINTTABn
Print modifier: moves cursor PRINTTAB(N) N 135
to specified Display position
n (expression).

PRINT USING string;exp
PRINT format specifier; PRINT USING A$;X 136
output exp in form specified PRINT USING "#.#" ;Y + z
by string field (see below).

INPUT' 'message'' ;variable
Print message (if any) INPUT"ENTER NAME";A$ 140
and await input from INPUT"VALUE";X
Keyboard . INPUT''ENTER NUMBERS" ;X,Y

INPUT A,B,C,0$

LPRINT
Output to line printer. LPRINTA$ 144

PRINT#- I
Output to Cassette. PRINT# - 1,A,B,C,0$ 144

*exp may be a string of numeric cons tant or variable , or a list of such items.

210

APPENDIX

INPUT#- I
Input from Cassette. INPUT# - 1,A,B,C,D$

DAT A item list
DATA 22,33, 11, 1.2345 Hold data for access by

READ statement. DATA "HALL", "SMITH", "DOE"

READ variable list
Assign value(s) to the
specified variable(s), starting
with current DAT A element.

READ A,A 1,A2,A3
READ A$,B$,C$,D

RESTORE
Reset DAT A pointer to first
item in first DATA statement.

RESTORE

Field Specifiers for PRINT USING statements

Numeric
Character Function Example

Numeric field (one digit ###
digit per#) .

Decimal point position. ## .###

+ Print leading or trailing signs +#.###
(plus for positive numbers, # .###+
minus for negative numbers) .

Print trailing sign only if ###.##-
value printed is negative.

** Fill leading blanks with **###.##
asterisk.

$$ Place dollar sign immediatel y $$#### .##
to left of leading digit.

**$ Doll ar sign to left of leading **$####.##
digit and fill leading blanks
with asterisks.

[[[[or(1)(1)(1)(1) Exponential format, with one # .##[[[[
significant digit to left of
decimal . Press (1) to
input this character.

145

142

142

143

Page

136

136

137

137

136

136

136

136

211

,.
\\ __ ,__,..I!. ~ TRS-80 MODEL Ill

..
'

Prints out number with
commas, as in 1,356,000

#,######

Single character.

%spaces% String with length equal to
2 plus number of spaces
between % symbols .

%%

Program Statements

Statement/Function Examples

(Type Definition)

DEFDBL letter list or range
Define as double-precision all DEFDBLJ
variables beginning wi th DEFDBL X, Y,A
specified letter, letters or DEFDBL A-E,J
range of letters .

DEFINT letter list or range
Define as integer all variables DEFINTA
beginning with specified letter, DEF INT C,E,G
letters or range of letters. DEFINT A-K

DEFSNG letter list or range
Define as single-precision all DEFSNG L
variables beginning with DEFSNG A-L, Z
specified le tter, letters or DEFSNG P,R,A-K
range of letters

DEFSTR letter list or range DEFSTRA-J

Define as string all
variables beginning with
the specified letter, letters ,
or range of letters .

(Assignment and Allocation)

CLEARn

Set aside specified number CLEAR750
of bytes n for string storage. CLEAR MEM/10
Clears value and type of all CLEARO
variables.

212

136

137

137

Page

149

148

148

149

150

APPENDIX

DIM array(dim# 1, ... ,dim#k)
Allocate storage for DIMA(2,3) 150
k-dimensional array with the DIM A 1 (15), A2(15)
specified size per dimension: DIM B(X + 2),C(J,K)
dim #1 , dim#2 , ... , etc . DIM DIM T(3 ,3,5)
may be followed by a list of
arrays separated by commas .

LET variable= expression
Assign value of expression to LET A$ = "CHARLIE" 151
variable. LET is optional in LETB1 = C1
LEVELIIBASIC . LETA% = 1#

(Sequence of Execution)

END

End execution , return to 99END 151
Command Mode.

STOP

Stop execution , print Break 100STOP 152
message with current line
number. User may continue
with CONT.

GOTO line-number
Branch to specified line-number. GOTO 100 152

GOSUB line-number
Branch to sub-routine beginning GOSUB3000 153

at line-number.

RETURN

Branch to statement following RETURN 153

last-executed GOSUB.

ON exp GOTO line#], ... ,line#k
Evaluate expression; if ON K + 1 GOTO 100,200,300 154

INT (exp) equals one of
the numbers 1 through k,
branch to the appropriate
line number. Otherwise go
to next statement.

ON expGOSUB line#] , . . . ,line#k
Same as ON ... GOTO except ON J GOSUB 330,700 155

branch is sub-routine beginning
at line# 1, line#2, ... , or
line# k, depending on exp.

213

Statement/Functions Examples

FOR var= exp TO exp STEP exp Page

Open a FOR-NEXT loop. FOR I= 1 TO50STEP 1.5 155
STEP is optional; if not used, FORM%=J% TOK%-1
increment of one is used.

NEXT variable
Close FOR-NEXT loop. NEXT 155
Variable may be omitted. NEXTI
To close nested loops, a NEXTl,J,K
variable list may be used.
See Chapter 18.

ERROR (code)
Simulate the error specified ERROR(14) 158
by code (See Error Code
Table).

ON ERROR GOTO line-number
If an error occurs in ON ERROR GOTO 999 158
subsequent program lines,
branch to error routine
beginning at line-number.

RESUMEn
Return from error routine RESUME 149
to line specified by n. If n RESUME0
is zero or not specified, return RESUME 100
to statement containing error. RESUME NEXT
If n is "NEXT", return to
statement following error-
statement.

RANDOM
Reseeds random number RANDOM 182
generator.

REM
REMark indicator; ignore rest REM A IS ALTITUDE 160
of line.

214

(Tests- Conditional Statements)

IF exp-1 TH EN statement-]
ELSE statement-2

Tests exp-1: If True, execute
statement-] then jump to
next program line (unless
statement-I was a GOTO).

If exp-1 is False.jump
directly to ELSE statement
and execute subsequent
statements.

(Graphics Statements)

CLS

Clear Video Display

RESET(x,y)

Tum off the graphics block
with horizontal coordinatex
and vertical coordinate y,
0< = X < I 28 and 0< = Y < 48

SET(x,y)
Tum on the graphics block
specified by coordinates x
and y. Same argument limits
as RESET

(Special Statements)

POKE location, value
Load value into memory
location (both arguments in
decimal form)
0< = value< = 255.

OUT port, value
Send value to port (both
arguments between 0 and 255
inclusive)

APPENDIX

IF A = 0 THEN PRINT "ZERO"
ELSE PRINT "NOT ZERO"

CLS

RESET (8 + B,11)

SET(A *2,B + C)

POKE 15635,34
POKE 17770,A + N

OUT255,10
OUT55,A

160-1

186

186

185

189

189

215

String Functions*

Function Operation Examples Page

ASC(string) Returns ASCII code of first character ASC(B$) 164
in string argument. ASC("H")

CHR$(code exp) Returns a one-character string defined CHR$(34) 164
by code. If code specifies a control CHR$(1)
function, that function is activated.

FRE(string) Returns amount of memory available FRE(A$) 165
for string storage. Argument is a
dummy variable.

INKEY$ Strobes Keyboard and returns a one- INKEY$ 166
character string corresponding to key
pressed during strobe (null string if
no key is pressed).

LEFT$(string, n) Returns first n characters of string. LEFT$(A$, 1) 167
LEFT$(L 1 $ + C$,8)
LEFT$(A$,M + L)

LEN (string) Returns length of string (zero for null LEN(A$ + 8$) 167
string) . LEN("HOURS")

MID$(string,p,n,) Returns substring of string with length MID$(M$,5,2) 168
n and starting at position pin string. MID$(M$ + 8$,P,L-1)

RIGHT$(string,n) Returns last n characters of string. RIGHT$(NA$, 7) 168
RIGHT$(AB$,M2)

STR$(numeric exp) Returns a string representation of the STR$(1.2345) 168

evaluated argument. STR$(A + 8*2)

STRING$(n,char) Returns a sequence STRING$(30, ".") 169

of n char symbols STRING$(25, "A")
using first character STRING$(5,C$)
of char.

TIME$ Returns date and time. TIME$ 170

VAL(string) Returns a numeric value corresponding VAL("1" + A$+ " ." + C$) 170

to a numeric-valued string. VAL(A$ + B$)
VAL(G1$)

*string may be a string variable, expression , or constant.

216

APPENDIX

Arithmetic Functions*

Function Operation (unless noted otherwise, Examples Page
-1.7E +38< =exp < = 1.7E +38)

ABS(exp) Returns absolute value. ABS(L*.7) 179
ABS(SIN(X))

ATN(exp) Returns arctangent in radians. ATN(2.7) 179
ATN(A*3)

CDBL(exp) Returns double-precision representa- CDBL(A) 180
tion of exp. CDBL(A + 1/3#)

CINT(exp) Returns largest integer not greater CINT(A# + B) 180

than exp . Limits:
- 32768< =exp<+ 32768.

COS(exp) Returns the cosine of exp ; assumes COS(2*A) 180

exp is in radians. COS(A/57 .29578)

CSNG(exp) Returns single-precision representation , CSNG(A#) 180

with 5/4 rounding in least significant CSNG(.33*8#)
decimal when exp is double-precision.

EXP(exp) Returns the natural exponential, EXP(34.5) 181

eexp = EXP(exp). EXP(A *B*C - 1)

FIX(exp) Returns the integer equivalent to FIX(A - B) 181

truncated exp (fractional part of exp
is chopped off) .

INT(exp) Returns largest integer not greater INT(A + B*C) 181

than exp.

LOG(exp) Returns natural logarithm (base e) LOG(12.33) 181

of exp. Limits: exp must be positive . LOG(A B + B)

RND(O) Returns a pseudo-random number RND(0)
182

between 0 .000001 and 0 . 999999
inclusive .

RND(exp) Returns a pseudo-random number RND(40)
182

between 1 and INT(exp) inclusive . RND(A + B)
Limits: 1 < = exp<32768.

SGN(exp) Returns - 1 for negative exp ; 0 fo r
182

SGN(A*B + 3)
zero exp ; + l for positive exp . SGN(COS(X))

*exp is any numeric-valued expression or constant.

217

... - - r'"•
--

Function Operation Examples
Page

SIN(exp) Returns the sine of exp; assumes exp SIN(A/B) 183
is in radians. SIN(90/57.29578)

SQR(exp) Returns square root of exp. Limits: SQR(A *A - B*B) 183
exp must be non-negative.

TAN(exp) Returns the tangent of exp; assumes TAN(X) 183

exp is in radians. T AN(X* .017 45329)

Special Functions

Function Operation and Limits Examples Page

ERL Returns line number of cu1Tent error. ERL 187

ERR Returns a value related to current error ERR/2 + 1 187

code (if error has occurred) . ERR =
(e1rnrcode -1)*2. Also: (ERR/2) + 1 =
e1Torcode.

INP(port) Inputs and returns the current value INP(55) 188

from the spec ified port . Both argument
and result are in the range Oto 255

inclusive .

MEM Returns total unused and unprotected MEM 188

bytes in memory. Does not include
unused string storage space.

PEEK(location) Returns value stored in the specified PEEK(15370) 188

memory byte. location must be a valid
memory address in decimal form (see
Memory Map in Appendix D).

POINT(x,y) Checks the graphics block specified by 186

horizontal coordinate x and vertical
coordinate y. If block is ''on'', returns a
True (- 1); if block is "off", returns a
False (0). Limits: O< =x < 128;0< = y<48 .

POS(0) Returns a number indicating the cur- POS(0) 188

rent cursor position. The argument
"0" is a dummy variable.

USR(n) Branches to machine language sub- USR(0) 191

routine. See Chapter 22.

YARPTR(var) Returns the address where the specified VARPTR(A$) 193

variable's name, value and pointer are VARPTR(N1)
stored , var must be a valid variable name .

218

APPENDIX

Model Ill BASIC Reserved Words*

@

ABS

AND

ASC

ATN

AUTO

CDBL

CHR$

CINT

CLEAR

CLOCK

CLOSE

CLS

CMD

CONT

cos
CSNG

CVD

CVI

CVS

DATA

DEFDBL

DEFFN

DEFINT

DEFSNG

DEFUSR

DEFSTR

DELETE

DIM

EDIT

ELSE LUST RENAME

END LPRINT RESET

EOF LOAD RESTORE

ERL LOC RESUME

ERR LOF RETU RN

ERROR LOG RIGHT$

EXP MEM RND

FIELD MERGE RSET

FIX MID$ RUN

FN MKD$ SAVE

FOR MKI$ SET

FORMAT MKS$ SGN

FRE NAME SIN

FREE NEW SQR

GET NEXT STEP

GOSUB NOT STOP

GOTO ON STRING$

IF OPEN STR$

INKEY$ OR SYSTEM

INP OUT TAB

INPUT PEEK TAN

INSTR POINT THEN

INT POKE TIM E$

KILL POS TO

LEFT$ POSN TROFF

LET PRINT TRON

LSET PUT US ING

LEN RANDOM USR

LINE READ VAL

LIST REM VARPTR

VERIFY

*Some of these words have no function in Model III BASIC; they are reserved for
use in Disk BASIC. None of these words can be used inside a variable name. You ' II
get a syntax error if you try to use these words as variables.

219

- .-..

Program Limits and Memory Overhead

Ranges

Integers - 32768 to + 32767 inclusive
Single Preci sion - I. 7014 11 £±38 to + 1. 70 1411 £±38 inclusive
Double Precision - I .7014l 1834544556D±38 to + l.701411 834544556D±38 inclusive

String Range: Up to 255 characters

Line Numbers Allowed: o to 65529 inclusive

Program Line Length: Up to 255 characters (input 240, edit to 255)

Memory Overhead

Program lines require 5 bytes minimum, as follows:
Line Number- 2 bytes
Line Pointer- 2 bytes
Carriage Return - I byte

In addition, each reserved word, operator, variable name, special character and
constant character requires one byte.

220

APPENDIX

Dynamic (RUN-Time) Memory Allocation

Integer variables: 5 bytes each
(2 for value, 3 for variable name)

Single-precision variables: 7 bytes each
(4 for value, 3 for variable name)

Double-precision variables: 11 bytes each
(8 for value, 3 for variable name)

String variables: 6 bytes minimum
(3 for variable name, 3 for stack and variable pointers, I for each character)

Array variables: 12 bytes minimum
(3 for variable name, 2 for total size, I for number of dimensions, 2 for size of

each dimension, and 2, 3, 4 or 8 [depending on array type]
for each element in the array)

Each active FOR-NEXT loop requires 16 bytes.

Each active (non-returned) GOSUB requires 6 bytes.

Each level of parentheses requires 4 bytes plus 12 bytes for each temporary value.

General Formula for Computing Memory Requirements of Arrays

The array G (NI, N2, ... , Nk) requires the following amount of memory:

14 + (k*2) + T*j(N1 +1)*(N2+1)* ... *(Nk+1)~

where k is the number of dimensions in the array, and the value of T depends on the
array type:

Type
Integer
Single-Precision
Double-Precision
String*

T=
2
4
8
3

*In computing the actual memory requirements of string arrays, you must add the
text length of each element in the array. When the array is first dimensioned, all
elements have length o. The string text will be stored in the string space (reserved by
the CLEAR n statement).

221

Accuracy

Single-precision calculations involving + , - , ", and I are accurate to six significant
digits; double-precision calculations involving the same operations are accurate to
16 significant digits.

The exponentiation operator CU (displayed as "[") is single-precision.

The trigonometric and logarithmic functions are single-precision; other functions
have a precision depending on the input argument and on the function. For
example, CDBL returns a double-precision value; ABS returns a value with the same
precision as the input argument.

When converting from single- to double-precision, use the following technique to
avoid introduction of incorrect values in the extra digits of precision:

double-precision variable= VAL (STR$ (Single-precision variable))

222

APPENDIX

B / Error Codes

CODE ABBREVIATION ERROR

NF NEXT without FOR

2 SN Syntax error

3 RG Return without GOSUB

4 OD Out of data

5 FC Illegal function call

6 ov Overflow

7 OM Out of memory

8 UL Undefined line

9 BS Subscript out of range

10 DD Redimensioned array

11 10 Division by zero

12 ID Illegal direct

13 TM Type mismatch

14 OS Out of string space

15 LS String too long

16 ST String formula too complex

17 CN Can't continue

18 NR NO RESUME

19 RW RESUME without error

20 UE Unprintable error

21 MO Missing operand

22 FD Bad file data

23 L3 Disk BASIC only

223

Explanation of Error Messages

NF NEXT without FOR: NEXT is used without a matching FOR statement. This
error may also occur if NEXT variable statements are reversed in a nested
loop.

SN Syntax Error: This usually is the result of incorrect punctuation, open
parenthesis, an illegal characteror a mis-spelled command.

RG RETURN without GOSUB: A RETURN statement was encountered before a
matching GOSUB was executed.

OD Out of Data. A READ or INPUT# statement was executed with insufficient
data available. DAT A statement may have been left out or all data may have
been read from tape or DATA.

FC Illegal Function Call: An attempt was made to execute an operation using an
illegal parameter. Examples: square root of a negative argument, negative
matrix dimension , negative or zero LOG arguments, etc. Or USR call without
first POKEing the entry point.

OV Overflow: The magnitude of the number input or derived is too large for the
Computer to handle. NOTE: There is no underflow error. Numbers smaller
than ±I.701411 E- 38 single precision or± 1 . 7014 l l 834544556E - 38
double precision are rounded to O. See /0 below.

OM Out of Memory: All available memory has been used or reserved. This may
occur with very large matrix dimensions, nested branches such as GOTO ,
GOSUB, and FOR-NEXT Loops .

UL Undefined Line: An attempt was made to refer or branch to a non-existent
line.

BS Subscript out of Range: An attempt was made to assign a matrix element
with a subscript beyond the DIMensioned range.

DD Redimensioned Array: An attempt was made to DIMension a matrix which
had previously been dimensioned by DIM or by default statements. It is a
good idea to put all dimension statements at the beginning of a program.

/0 Division by Zero: An attempt was made to use a value of zero in the
denominator. NOTE: If you can ' t find an obvious division by zero check for
division by numbers smaller than allowable ranges. See ov above and
RANGES page 221.

ID lllegal Direct: The use of INPUT as a direct command.

TM Type Mismatch: An attempt was made to assign a non-string variable to a
string or vice-versa.

224

APPENDIX

OS Out of String Space: The amount of string space allocated was exceeded.

LS String Too Long: A string variable was assigned a string value which
exceeded 255 characters in length.

ST String Formula Too Complex: A string operation was too complex to
handle. Break up the operation into shorter steps.

CN Can't Continue: A CONT was issued at a point where no continuable program
exists, e .g. , after program was ENDed or ED!Ted .

NR No RESUME: End of program reached in error-trapping mode.

RW RESUME without ERROR: A RESUME was encountered before ON ERROR GOTO
was executed.

UE Unprintable Error: An attempt was made to generate an error using an
ERROR statement with an invalid code .

MO Missing Operand: An operation was attempted without providing one of the
required operands.

FD Bad File Data: Data input from an external source (i.e. , tape) was not correct
or was in improper sequence, etc.

L3 DISK BASIC only: An attempt was made to use a statement , function or
command which is available only with the Disk System.

225

APPENDIX

C I TRS-80 Model III Character
Codes
Text is represented in the Computer by codes. For example, the letter "A" is
represented by the code 65. Control functions and graphics are also represented
by codes. The character codes range from zero through 255.

Codes zero through 31 usually represent certain control functions. For example,
code 13 represents a carriage return or' 'end of line''. However, in the Model III,
these same codes also represent 32 special display characters . For this application,
they must be loaded (P0KEd) into video RAM, not PRINTed .

Codes 32 through 127 represent the text characters- all those letters , numbers
and other characters that are commonly used to represent textual information. The
Model III text characters conform to the American National Standard Code for
Information Interchange.

Codes 128 through 191 , when output to the video display , represent 64 graphics
characters.

Codes 192 through 255, when output to the video display, represent either space
compression codes or special characters, as determined by software.

Many of the codes may be input from the keyboard; all of them may be stored in a
string and output to any device. For example, to output a code 31 to the video
display, use a statement like this:

PRINT CHR$(31)

For further details , see Using the Video Display in Section One of this manual.

Note: In the following table, vidram refers to Video RAM, i.e., addresses
from 15360 to 16383.

227

-Iii TRS-80 MODEL Ill
- ,.·.

In the following table, we summarize the keyboard and video display control
characters.

Code Video Display
Dec. Hex. Keyboardt PRINTCHR$(code) POKE vidram, code*

1 00 No effect
1 01 (BREAK) No effect

rsHim m m
2 02 (SHIFT) (!) (ID No effect
3 03 (SHIFT) rn m No effect
4 04 (SHIFT) (1) CID No effect
5 05 (SHIFT) (!) ffi No effect
6 06 (SHIFT) (!) CD No effect
7 07 (SHIFT) (1) (ID No effect
8 08 8 Backspace and erase

(SHIFT) Cf) CID
9 09 el Tab(0,8,16,24, ...)

(SHIFT) (1) CD
10 0A (I) Move cursor to start of

(SHIFT) (!) CD next line and erase line
11 OB (SHIFT) (!) CK) No effect
12 oc (SHIFT) W CD No effect
13 OD (ENTER) Move cursor to start of next

(SHIFT) (1) 00 line and erase line
14 OE (SHIFT) (!) (J[l Cursor on
15 OF (SHIFT) (!) CID Cursor off
16 10 (SHIFT) (1) W No effect
17 11 (SHIFT) w CID No effect
18 12 (SHIFT) (I) 0D No effect
19 13 (SHIFT) (!) C[) No effect
20 14 CSHITI'l (!) CD No effect
21 15 CSHmJ (1) CID Swap space compression/

special characters
22 16 (SHIFT) (1) O[) Swap special/alternate characters
23 17 (SHIFT) (t l 00 Double-size characters
24 18 (SHIFT) 8 Backspace without

(SHIFT) (1) 00 erasinq
25 19 SHIFTl ltl (Y) Advance cursor
26 1A (SHIFT) ltJ CD Move cursor down
27 1B (SHIFT) m Move cursor up
28 1C (SHIFT) (!) 0 Move cursor to upper left corner
29 1D (SHIFT) (!) (9 l Erase line and start over
30 1E (SHIFT) (1) 0 Erase to end of line
31 1F (CLEAR) Erase to end of display

(SHIFT) (I) 0

t Some of these keyboard characters can only be input using the I NKEY$ function.

*See Special Characters 0 through 31 later in this Appendix.

228

><
-0
t:::
1)
0..
0..

<(
(f;

-5
t:::
,_
1)

~

-r,
..c::
Cl)
::::l
0 ,_
-5
0
ti)

i.
Q,;
(.I
co:
i.
co:
.c u
-; -~
Q,;
Q.,

00
1)
1)

r:/)

APPENDIX

Code Video Display
Key-

Dec. Hex. board PRINT CHR$ (code) POKE vidram, code
32 20 (SPACEBARl ~ ~
33 21 ! ! !
34 22 // ,, ,,

35 23 # # #
36 24 $ $ $
37 25 % % %
38 26 & & &
39 27

, , ,

40 28 (((
41 29)))
42 2A * * *

43 2B + + +
44 2C , , ,

45 2D - - - -·

46 2E
47 2F I I I
48 30 0 0 0
49 31 1 1 1
50 32 2 2 2
51 33 3 3 3
52 34 4 4 4
53 35 5 5 5
54 36 6 6 6
55 37 7 7 7
56 38 8 8 8
57 39 9 9 9
58 3A
59 3B , , ,
60 3C < < <
61 30 = - -·

62 3E > > >
63 3F ? ? ?
64 40 @ @ (c i..
65 41 A A A
66 42 B B B
67 43 C C C
68 44 D D D

229

Code Video Display
Key-

Dec. Hex. board PRINT CHA$ (code) POKE vidram, code
69 45 E E E
70 46 F F F
71 47 G G G
72 48 H H H
73 49 I I I
74 4A J J J
75 4B K K K
76 4C L L L
77 40 M M M
78 4E N N N
79 4F 0 0 0
80 50 p p p
81 51 Q Q Q
82 52 R R R
83 53 s s s
84 54 T T T
85 55 u u u
86 56 V V V
87 57 w w w
88 58 X X X
89 59 y y y
90 5A z z z
91 5B w [[
92 5C "' \
93 50 l l
94 5E /\ /\

95 5F - -
96 60 (SHIFT) ® '

97 61 A a a
98 62 B b b
99 63 C C C

100 64 0 d d
101 65 E e e
102 66 F f f
103 67 G q q
104 68 H h h
105 69 I i i

230

APPENDIX

Code Video Display
Key-

Dec. Hex. board PRINT CHA$ (code) POKE vidram, code
106 6A J i i
107 6B K k k
108 6C L I I
109 6D M m m
110 6E N n n
111 6F 0 0 0

112 70 p p p
113 71 Q q q
114 72 R r r
115 73 s s s
116 74 T t t
117 75 u u u
118 76 V V V

119 77 w w w
120 78 X X X

121 79 y y y
122 7A z z z
123 7B { {
124 7C I I

I I

125 7D } }
126 7E - -
127 7F ± ±
128 80 Codes 12a-191 output graphics characters. See the graphic

display table in this Appendix.
192 co Codes 192-255 output either space

compression codes or special characters when
used with PRINT CHA$ (code) .

255 FF They always output special characters
when used with POKE vidram, code.
See the special character table in this Appendix.

231

I . j : .,., . • I ' •
I I

I I I
I . ~ + I i ~ ,_ ,. I\) I I

. t- •'',. . ', -•-- . -: - t ¼· -, t ♦ :..- - ~ - · · · ~ 'r - -- 135 . r-~ .• ~ (.) 128 i29 139 131 n2 133 134 I\) I t I I I • I
i-s
~

• - • , I .
. ~ ~ ; f

"O

I
T

~ ID : i =-i
■

I • -· I
I ~

(I)

• t "'- · I ~ +-~ Cl 136 137 138 139 140 141 142 143 . i =-~ I ; -4
i-s lJ

I • • I
~

·i ~1 r :• ' ~

"' ~
< I ½ ' i - I

I ' ~ 00 ! I I I I ' i-s 0
I (I)

~

c · I - 3: 144 145 146 147 148 149 151J 151 Cl
0 0
Q., C

'
" ,-: ~ m (I)

' ' """"
r

N -00 --152 153 154 155 156 157 158 159 I

"""" \0

"""" - ,_.,
I ■ \ I I I I

160 ·m 162 163 154 165 Hi6 167

I , ~ ' i~li 169 170 17'1 172 173 174 175

I ■ L ~
mi rn 118 179 ·1so 1!l1 182 'ill3

J l I ~ ~
184 '!85 186 187 188 Hl!l 190 191

APPENDIX

Special Characters (0-31, 192-255)

I u ,, . .. ····•·····

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

. ·~········ ·•········· ····

. '

. '

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

192 193 194 195 196 197 198 199

200 201 202 203 204 205 206 207

233

-- TRS-80 MODEL Ill

208 209 210 211 212 213 214 215

216 217 218 219 220 221 222 223

224 225 226 227 228 229 230 231

232 233 234 235 236 237 238 239

240 241 242 243 244 245 246 247

248 249 250 251 252 253 254 255

234

TRS-80 Video Display Worksheet llad10 lllaek
TITLE _________ PROGRAMMER _____ PAGE_OF _

APPENDIX

DI Internal Codes for BASIC
Keywords

The follow ing are the internal codes that the Computer uses to store BASIC

keywords. If you PEEK at the program buffer area (starting at address 17 129 in
decimal) you will find your program stored in the fo llowing codes.

Dec. Dec.
Code BASIC Keyword Code BASIC Keyword

129 FOR 167 LOAD
130 RESET 168 MERGE
131 SET 169 NAME
132 CLS .; 170 KILL
133 CMD 171 LSET
134 RANDOM 172 RSET
135 NEXT 173 SAVE
136 DATA 174 SYSTEM
137 INPUT 175 LPRINT
138 DIM 176 DEF
139 READ 177 POKE
140 LET 178 PRINT
141 GOTO 179 CONT
142 RUN 180 LIST
143 IF 181 LUST
144 RESTORE 182 DELETE
145 GOSUB 183 AUTO
146 RETURN 184 CLEAR
147 REM 185 CLOAD
148 STOP 186 CSAVE
149 ELSE 187 NEW
150 TRON 188 TAB
151 TROFF 189 TO
152 DEFSTR 190 FN
153 DEFINT 191 USING
154 DEFSNG 192 VARPTR
155 DEFDBL 193 USR
156 LINE 194 ERL
157 EDIT 195 ERR
158 ERROR 196 STRING$
159 RESUME 197 INSTR
160 OUT 198 POINT
161 ON 199 TIME$
162 OPEN 200 MEM
163 FIELD 201 INKEY$
164 GET 202 THEN
165 PUT 203 NOT
166 CLOSE 204 STEP

237

Dec. Dec.
Code BAS1C Keyword Code BASIC Keyword

205 + 231 CVS
206 232 CVD
207 * 233 EOF
208 I 234 LOG
209 235 LOF
210 AND 236 MK!$
211 OR 237 MKS$
212 > 238 MKD$
213 239 CINT
214 < 240 CSNG
215 SGN 241 CDBL
216 INT 242 FIX
217 ABS 243 LEN
218 FAE 244 STA$
219 INP 245 VAL
220 POS 246 ASC
221 SOR 247 CHA$
222 AND 248 LEFT$
223 LOG 249 RIGHT$
224 EXP 250 MID$
225 cos
226 SIN
227 TAN
228 ATN
229 PEEK
230 CVI

238

APPENDIX

E I Derived Functions
Function

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE
INVERSE SECANT
INVERSE COSECANT
INVERSE COTANGENT
HYPERBOLIC SINE
HYPOBOLIC COSINE
HYPERBOLIC TANGENT
HYPERBOLIC SECANT
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT
INVERSE HYPERBOLIC

SINE
INVERSE HYPERBOLIC

COSINE
INVERSE HYPERBOLIC

TANGENT
INVERSE HYPERBOLIC

SECANT
INVERSE HYPERBOLIC

COSECANT
INVERSE HYPERBOLIC

COTANGENT

Function Expressed in Terms of Model III BASIC Functions.
X is in radians.

SEC(X) 1.'COS(XJ
CSC(X) = 1/SIN(X)
COT(X) = 1/TAN(X)
ARCSIN(X) = ATN(X SOR(x·x -' 1))
ARCCOS(X) , - ATN(X.1SOR(x·x f 1)) + 1.5708
ARCSEC(X) =, ATN(SQR(X"X ·· 1)) + (SGN(X) 1)"15708
ARCCSC(X) ,, ATN(1 'SOR(X"X 1)) + (SGN(X) 1)'1 5708
ARCCOT(X) ,, - ATN(X) + 1.5708
SINH(X) = (EXP(X) ·· EXP(- X)).'2
COSH(X) = (EXP(X) + EXP(- X)) t2
TANH(X) = - EXP(- X)!(EXP(X) + EXP(- X))"2 + 1
SECH(X) = 2/(EXP(X) + EXP(-··· XJ)
CSCH(X) = 2/(EXP(X) EXP(- X))
COTH(X) = EXP(- X).(EXP(X) - EXP(X))*2 + 1

ARGSINH(X) = LOG(X + SQR(X"X + 1))

ARGCOSH(X) = LOG(X + SQR(X'X - 1))

ARGTANH(X) = LOG((1 + X)/(1 - X)) /2

ARGSECH(X) = LOG((SQR(- X"X + 1) + 1),X)

ARGCSCH(X) = LOG((SGN(X)*SOR(X*X + 1) + 1 J'X)

ARGCOTH(X) =0 LOG((X + 1)l(X - 1))/2

Valid Input Ranges

Inverse Sine - 1 < X < 1
Inverse Cosine - 1 < X < 1
Inverse Secant X < - or X> 1
Inverse Cosecant X < - 1 or X > 1
Inverse Hyper. Cosine X > 1
Inverse Hyper. Tangent X*X < 1
Inverse Hyper. Secant O < X < 1
Inverse Hyper. Cosecant X <> O
Inverse Hyper. Cotangent X*X > 1

Certain special values are mathematically undefined . but our functions may
provide invalid values:

TAN and SEC of 90 and 270 degrees
COT and CSC of O and 180 degrees

For example, TAN(1.5708) returns a value but TAN<90* .01745329) returns a DIVISION

BY ZERO error. 90* ,01745329 = 1.5708

239

Other values which are not .ivailable from these functions are:

ARSCIN (- 1) = - Pl 2
ARCSIN (1) = Pl 2
ARCCOS(- 1) = Pl
ARCCOS (1) = 0
ARCS EC (- 1) = - Pl
ARCSEC (1) = 0
ARCCSC (- 1) = - Pl . 2
ARCCSC (1) = Pl 1 2

Please note that the above information may not be exhaustive.

240

APPENDIX

F / Base Conversions

DEC. HEX. BINf.1RY DEC. HEX. BINM<Y
--------------------- ---------------------

(ZI 00 (1 (ZI (2) 0 0 0 (2) C.1 40 28 (2)(2) l 01 0 (2)(2)
1 01 0 (2) 0 (2) 0 (2) 0 1 Lt-1 29 0(2) 101 (2)(Zl 1
~? (2)2 (1 (2) (2) 0 0 (2) 1 0 L ·-:• I· , :. 2A (2)(2) 1 01 (2) 1 0
3 03 (1(100(2)011 Lf3 :~:F!, 00112lHH 1
4 0 L1. 0(2)(2)(2)e.1100 4A :?C km 1 01 1 (2)(1
~-:' 0::i e,,1000101 Li::: I· • .! 2D 001 (2) 1 1 01
l ., 06 (1000011 (Zl .l1,6 2E (2)0 H.1111 (2)
7 07 c.1v.10,10111 1,.7 2F (Zl(2) 1 (2) 1111
B 08 Q)(2)(2)1Zl 1 0,10 L1,8 30 001100(2)0
Cj- C.19 000(2) l 001 49 31 00 11 fim0 l

UZI 0A 00(2)01010 ~-\ (Zl ::..~~~: (1(2) 110(11 0
1 1 0B 00(2)01011 :i 1 33 0(2)110011
12 0C 00 00 1 1 00 =•~? JLt 00110100
13 0D 00001101 :13 =~s 001101(2)1
1 Lt 0E 000011 H1 ::.4 36 0(2) 110 1 10
l.5 12lF 0 0 0 (2) 1 1 1 1 C:-' C:' .).J 37 001 H:1111
16 10 00(2) l Q)(2)(Zl(2) :,6 38 (2)(2) 1110(2)(2)
17 11 (1'.10(2) 1 (2)(2) (2) 1 :::,7 39 00111 m11
18 1::: 0 (2) (2) 1 0 (2) 1 (2) :,8 3A 0(2) 111 01 0
19 13 (2)0010(2) 11 ::i9 3B (2)(2) l. 11 (2) 11
:::0 1 Lt 0001 (2) 101ZJ 60 3C (2)(2) 1111 0(2)
:::1 15 00(2) 10101 61 ::m (2)(2) 1111 01
::?::;: 16 0(2)(2) 10110 t,2 3E (2)(2) 11111 (2)
23 17 (1(2) 0 112) 1 1 1 63 3F (2)0 1 1 1 1 11
2 Lt 1 fl (2) 0 (2) 1 1 0 (2) (2) 6Lt .lf (2) 0 1 (2) (2) 0 0 (2) 0
;~~j 19 0(2)(2) 11 (2)01 65 41 (2) 1 (2) (2) 0 0 (2) 1
:::6 1A 00011 (2) 10 66 1t2 01 (2)0(2)01 0
:::7 1B 0(2)(2) 11011 67 Lt3 0 1 (2)(2') (2) 0 1 1
28 1C 0 (2) 0 1 1 1 12'.1 (2) 6B 4Lt (2) 10001 (2)(2)
:::9 1D 00(2) 111 (2) 1 69 45 0 1 0(2)(2) 11ZJ 1
::.m 1E 0(2)011110 70 46 (2) 112) (2) 0 1 1 (2)
31 1F 00(2) 11111 71 47 01 000 111
:t2 2(2) 0 0 1 (2) 0 0 0 0 72 48 (2) 1001000
33 ::: 1 (2) (2) 1 (2) (2) 0 0 1 73 L1,9 (2) 1 (2)01 0(2) 1
-,1 '-'•' + L:L: 001000 10 7Lt LtA 01 (2)0 1 0 1 0
3:i :::3 0 (2) 1 (2) (2) (2) 1 1 7:i 4B (2) 1 (2)(2) 1 011
36 2Lt 00 1 (2)(2) 100 76 4C (2) 1 0(2) 1100
37 :::s 00 1 (2)(2) 1 01 T7 4D (2) 1001101
38 ··2.6 (2)(2) 1 (2)12) 1 10 78 4E (2)1(2)(2)111(2)
39 27 (2)0100111 79 LtF 0 1 (2)0 1111

241

DEC. HE X. BINARY DEC. HEX. BINAHY

--------------------- - ---- - - --- ----- ----- -
f:t~I ::, (2) 0101i2'.t000 120 78 01111000

f:-l ~:il i2'.I l 01 00(11. l ?1 79 C:11 11 1001

[::? ~)::'. i2'.1H1100H1 122 7A C:11111010

EU :,3 01010011 123 7B 01111011

UL1 ~'\L1 0H11i2'.1100 1 :?L1 7C 0111110(1

BS 55 0H110101 12 :', 7D 01111101

B6 :ib 010HH 10 1?6 7E 01111110

Efl 57 010101 l l 127 7F 01111111

BB SB C:11 12'.11 l 012'W'.1 l?B 80 1000,1012'.1(1
B9 5 9 0.Hlll 1.001 l 29 B 1 1 0 (;_I) 0 0 0 0 1
c;·(2) SA 01011010 13 0 8::: l 000001 (Zl

9:1. SB C:11011011 :I. :H 83 1 0 m1.H2l 0 1 1
9 --, .,:;. :lC 0H111100 1 3;: BL1 1 (2'.l(Zl(ZIC:1100

93 :iD 0HH 1112'.11 133 B::i 10000101

9L1 :)E 0101.1110 1 :.v1 El6 l 0 0001 1 0

9::i :iF 01011 1 11 13::, B7 1 (2')(7.)(10111

9 6 6 C:1 eJ 11 V.W'.100(1 136 BB 1 0 0 0 1 0 0 0

97 61 01 H'.10001 137 E)C'i 10001001

98 62 01100010 138 BA 100010112'.1

99 63 01100011 139 BB 10001011

l 00 f:.A 01100100 1 Lt-0 BC 10001100

101 6::i C:11100101 1 id BD 10001101

1 (?.J2 66 011001. 10 1L12 BE 10001110

103 67 01100111 143 BF 10001111

1 0L1 68 01101000 14Lt 90 1 001 0000

105 69 011CH001 1 i1:i 91 10010001

l C!'.16 6A 0110101.0 1 L16 9·-:, ..:. 10010010

107 68 01101011 1 L• 7 93 10010011

108 6C 01101100 148 9L1 10010100

109 6D 01101101 149 9c· _) 10010101

1:l0 6E 01101110 150 96 10010110

l:l1 6F 01101111 1 :, 1 97 100H1111

112 70 01110(2)00 1::i2 98 10011000

113 71 011.10001 1 :)3 99 10011001
11 Lf 7::: 01110010 1 ~:\ 4 9A 10011010
1 l :, TJ 01110011 155 98 10011011

116 7 Lf 01110100 1 ~\6 9C 10011100
11.7 75 01110101 157 9D 10011101
1:1.B 76 01110110 158 9E 10011110

1 :I. 9 77 01110111 159 9F 1 001 1111

242

APPENDIX

DEC. HEX. BINARY DEC. HEX. BINAHY
--------------------- ---------------------
160 Al'J 1 0 1 12'.1 12'.1 0 0 0 :?12'.112'.1 CB 11 0(11 12'.100
161 Al 101 (2)(2'.1(2),11 201 C9 1112'.1&11 012'.11
1.62 A2 10112'.112'.10H1 2(12 CA 1112'.10H11.0
163 A3 112'.1100011 20:-s CB 1H101011
1l:A AL1. 101 IZl12'.11 l2'.lt1 2!2'.IL• cc 11017..11100
165 AS 10112'.10101 20~_\ CD 11001101
166 A6 10100110 206 CE 11001110
167 A7 10100111 :,/11.J/ CF 1 H10111 l
168 AB 1010100(2) :?08 D0 1 1 0 H1000
169 A9 10101001 209 Dl j_ 10100(11
170 AA 1010101(2) 210 D2 1101001(2)
171 AB 10101011 211 D3 11010011
172 AC 101011012'.1 ;:~ 1 :;: DL• 11010H10
173 AD 10101101 213 DS 11010101
17L• AE 10101110 21 L• D6 11010110
175 AF 10101111 21 ~) D7 11010111
176 80 10110000 216 DB 11011000
1T/ B1 10110001 217 D9 11011001
178 e.2 101.10010 218 DA 11011010
179 B3 10110011 219 DB 11011011
180 B4 101.10100 £~;::0 DC 11011100
181 BS 10110101 ;:~ ::;: 1 DD 11011101
182 86 101.10110 .-···-···-· ..::,.,:: . ..::. DE 1101.1110
183 87 10110111 ~:~;::3 DF 1101.1111
184 BB H1111 000 :?2L~ E0 1 1 1 12) 0 0 0 0
18:.\ 89 10111001 L:L~S E1 11100001
186 BA 10111010 ~:;?t> E2 11100010
187 BB 10111011 227 E3 11100011
188 BC 10111100 ~=~;:s E4 11100100
189 BD 10111101 ::?:2:9 E:', 11100101

1.90 BE 10111110 230 E6 11100110
191 BF 101.11111 231 E7 11100111
192 C0 1 1 0 0 0 0 0 0 L~3:.";;: EB 11101000

193 Ci 11000001 233 E9 11101001
194 c·-· 11 00001 0 23L• EA 11101010 ~-
195 C3 1 1 0 0 0 0 1 1 235 EB 11101011

196 CL• 11000100 236 EC 11101100
197 cs 11000101 2:-s7 ED 11101101
198 Cb 11000110 238 EE 11101110
199 C7 11000111 239 EF 11101111

243

DEC. HEX. BINARY

240 F0 1 1 1 10000
241 F1 1 1 1 10001
242 F2 1 1 1 10010
243 F3 1 1 1 1001 1
244 F4 1 1 1 10100
245 FS 1 1 1 10101
246 F6 1 1 1 10110
247 F7 1 1 1 101 1 1
248 FB 1 1 1 11000
249 F9 1 1 1 1 1001
250 FA 1 1 1 1 1010
251 FB 1 1 1 1101 1
252 FC 1 1 1 1 1100
253 FD 1 1 1 1 1 101
254 FE 1 1 1 1 1 1 10
255 FF 1 1 1 1 1 1 1 1

244

APPENDIX

GI Model I to Model III Program
Conversion Hints
From a language standpoint , Model III BASIC is fully compatible with Model I
Level II BASIC. In fact , the two BASIC's are identical, except that Model 111 BASIC
includes one more function. TIME$.

However, because of Model Ill's many special features not available in Model I.
there are some internal differences which may require that you modify any Model I
Level II BASIC programs you may have.

1. For a given TRS-80 (16K. 32K or48K RAM). the amount of user memory in Model
III is 258 bytes less than the amount in Model I.

2. To load a Level II BASIC program, you must select the Low (500 baud) cassette
speed on your Model III.

3. When running a Level II BASIC program which requires all-capitals keyboard
entries, be sure to select all-caps mode. (SHIFT)([) is the on/off toggle for
all-caps.

4. Unlike the Model I, Model III lets you interrupt a cassette. line printer. or
RS-232-C operation by holding down the (BREAK) key . Some of your Level II
programs may need modification to take this feature into account.

5. The video display character sets are slightly different in Model I and Model Ill.
Model III produces standard ASCII characters for codes 32 through 127; Model I
does not. In particular , there is no up arrow , down arrow , left arrow or right
arrow in the Model II I character set. However. Model lll has an additional set of
96 special characters from which you can probably find whatever you need . See
the table of Model Ill Character Codes for details .

Radio Shack Applications Programs

For a list of which Model I programs will run on Model III and which won't, see the
Radio Shack Computer Catalog. Most Model I-only programs will be available in
Model Ill versions. Check at your local Radio Shack .

245

APPENDIX

Hf Glossary
address A location in memory, usually specified as a two-byte hexadecimal
number. The address range l Oto FFFFJ is represented in decimal as [Oto 32767]
[- 32768, ... , -1].

alphabetic Referring strictly to the letters A to z.

alphanumeric Referring to the set of letters A to z and the numerals 0-9.

argument The string or numeric quantity which is supplied to a function and is
then operated on to derive a result; this result is referred to as the value of the
function.

array An organized set of elements which can be referenced in total or
individually , using the array name and one or more subscripts. In BASIC, any
variable name can be used to name an array; and arrays can have one or more
dimensions. AR() signifies a one-dimensional array named AR; AR(,) signifies a
two-dimensional array named AR; etc.

ASCII American Standard Code for Information Interchange . This method of
coding is used to store textual data. Numeric data is typically stored in a more
compressed format.

BASIC Beginners ' All-purpose Symbolic Instruction Code .

binary Having two possible states, e .g., the binary digits 0 and I. The binary (base
2) numbering system uses sequences of zeroes and ones to represent quantities .
This is analagous to the Computer ' s internal representation of data , using electrical
values for 0 and I.

bit Binary digit; the smallest unit of memory in the Computer, capable of
representing the values o and I.

break To interrupt execution of a program. In BASIC the statement STOP causes a
break in execution, as does pressing the (BREAK) key.

buffer An area in RAM where data is accumulated for further processing.

byte The smallest addressable unit of memory in the Computer, consisting of 8
consecutive bits, and capable ofrepresenting 256 different values, e.g. , decimal
values from o to 255.

compressed-format A method of storing information in less space than a standard
ASCII representation would require. An integer always requires two bytes; a
single-precision number, four; a double-precision number, 8- regardless of how
many characters are required to represent the numbers as text. String values are not
stored in compressed format; each character requires one byte.

BASIC programs in RAM are stored in compressed-format, with all BASIC keywords
stored as special one-byte codes .

247

--- TRS-80 MODEL Ill

data Information that is passed to or output from a program. There are four types
of data:
• Integer numbers
• Single-precision numbers
• Double-precision numbers
• Character-string sequences (strings)

debug To find and remove logical or syntactic errors from a program.

decimal Capable ofassuming one of ten states, e .g., the decimal digits 0, I , . . . ,9 .

Decimal (base 10) numbering is the everyday system, using sequences of decimal
digits. Decimal numbers are stored in binary code in Model 111 BASIC.

default An action or value which is supplied by a program when you do not specify
an action or value to be used.

delimiter A character which marks the beginning or end of a data item, and is not a
part of the data . For example, the double-quote symbol is a string delimi ter to
BASIC.

device A physical part of the computer system used for data 1/0, e.g. , keyboard ,
display, or line printer.

diskette A magnetic recording medium for mass data storage.

dummy variable A variable name which is used in an expression to meet syntactic
requirements, but whose value is insignificant.

edit To change existing information.

entry point The address of a machine-language program or routine where
execution is to begin . This is not necessarily the same as the starting address. Entry
point is also referred to as the transfer address.

hexadecimal or hex Capable of existing in one of 16 possible states. For example,
the hexadecimal digits are o, 1,2, ... ,9,A,B,C ,D,E, F. Hexadecimal (base-1 6)
numbers are sequences of hexadecimal digits. Address and byte values are
frequently given in hexadecimal form. In Model III BASIC , hexadecimal constants
can be input by prefixing the constant with &H.

increment The value which is added to a counter each time one cycle of a
repetitive procedure is completed.

input To transfer data from outside the Computer (from a cassette file, keyboard,
etc.) into RAM .

kilobyte or K I 024 bytes of memory. Thus a 64K System includes 64* 1024=65536
bytes of memory.

logical expression An expression which is evaluated as either TRUE (= - I) or
FALSE(= 0).

248

APPENDIX

machine language The Z-80A instruction set , usually specified in hexadecimal
code. All higher-level languages must be translated into machine-language, or
interpreted by machine language, in order to be executed by the Computer.

null string A string which has a length of zero. For example, the assignment A$ = "
"makes A$ a null string.

object code Machine language derived from '' source code'' , typically , from
assembly language.

octal Capable of existing in one of eight states , for example , the octal digits are o,
1, . . . , 7. Octal (base-8) numbers are sequences of octal digits . Address and byte
values are frequently given in octal form . Under Model III BASIC, an octal constant
can be input by prefixing the octal number with the symbol &O .

output To transfer data from inside the Computer's memory to some external
area, e.g., a disk file or a line printer.

parameter Information supplied with a command to specify how the command is
to operate .

prompt A character or message provided by a program to indicate that it's ready to
accept keyboard input.

random access memory or RAM Semiconductor memory which can be addressed
directly and either read from or written to.

routine A sequence of instructions to carry out a certain function; typically, a
routine called from multiple points in a program.

statement A complete instruction in BASIC.

string Any sequence of characters which must be examined verbatim for meaning:
in other words, the string does not correspond to a quantity. For example, the
number 1234represents the same quantity as 1000+234, but the string "1234" does not.
(String addition is actually concatenation, or stringing-together, so that: "1234"
equals "1" + "2" + "3" + "4").

syntax The ''grammatical'' requirements for a command or statement. Syntax
generally refers to punctuation and ordering of elements within a statement.

transfer address See entry point.

249

APPENDIX

I/ RS-232-C Technical Information
Transmission of Digital Data

The transfer of digital data over relatively long distances is generally accomplished
by sending data in serial form using a single twisted wire pair to connect the
transmitting and receiving devices. One of two general transmission techniques is
commonly used, asynchronous or synchronous. The transmission technique used
in the Radio Shack system is asynchronous-bit-serial. Since we don't use the
synchronous technique, we '11 not mention it again. Asynchronous transmission
does not require as ynchronizing clock to be transmitted with the data and, the
characters need not be contiguous. This means that gaps of varying lengths may be
present between transmission of individual characters .

The bits which comprise a data character (generally from five to eight bits in length)
and synchronizing start and stop elements are added to each character as shown
below. The start element is a single logic zero (0) data bit that is added to the
front
character. The stop element is maintained until the start element of the next
character is transmitted. There is no upper limit to the length of the stop element.
However, there is a lower limit that depends on system characteristics. Typical
lower limits are 1.0, 1.42 or 2.0 data-bit intervals (although most modern systems use
1.0 or 2.0 stop bits). The negative-going transition of the start element defines the
location of the data bits in the character being transmitted. A clock source at the
receiver is reset by this transition and is used to locate the center of each data bit.

There are several good reasons for using the asynchronous data transmission
system. A clock signal does not need to be transmitted with the data, thus,
equipment is simpler. Also, the characters don't need to be sent all at one time; they
can be transmitted as they become available. This is particularly useful when
transmitting data from manual-entry input devices (e.g. a keyboard) . The major
disadvantage of asynchronous transmission is that it requires a significant portion
of the communications bandwidth for start and stop elements.

The rate at which asynchronous data is transmitted is defined as the baud rate.
Baud rate is the inverse of the time duration of the shortest signal element.
Normally, this is one data bit interval. The bau~ rate is equal to the bit rate if one
stop bit is used; but for systems which use more than one stop bit, the baud rate does
not equal the bit rate .

STOP ELEMENT

I
START ELEMENT

---------ONE 8 BIT CHARACTER
STOP ELEMENT (11001000)

I
.__1 __.n.________.n.____

/
START ELEMENT ONE 8 BIT CHARACTER

(00100000)

Asynchronous Data

251

Asynchronous transmission over a simple twisted wire pair can be accomplished at
moderately high baud rates (I0K baud or higher, depending on the length of wire,
type of drivers , etc .). Transmission over the telephone network is generally limited
to approximately 2K baud and a modem is required to convert the data pulses to
tones that can be transmitted through the telephone network. Radio Shack's
Telephone Interface is the ideal modem for this RS-232-C Interface.

Signal Conventions

The E.I.A. RS-232-C electrical specification defines voltage levels and corresponding
logic conventions associated with data and control information transmitted
between equipment. For data interchange, the signal is considered in the marking
condition when the voltage measured at the interface point is more negative than
- 3 Volts(with respect to signal ground) . The signal is considered in the spacing
condition when the voltage is more positive than +3 Volts(with respect to signal
ground). The marking condition corresponds to a logic one (I) and the space
condition corresponds to a logic zero (0). For timing and control interchange
circuits, the function is considered to be' 'on'' when the voltage on the interchange
circuit is more positive than+ 3 Volts(with respect to signal ground); and is
considered to be' 'off" when the voltage is more negative than - 3 Volts(with
respect to signal ground). The' 'on'' condition corresponds to a logic zero (0) and
the ''off'' condition corresponds to a logic one (I). The following table summarizes
this information.

INTERCHANGE VOLT AGE
NOTATION

Negative Positive

Binary State 1 0
Signal Condition Marking Spacing
Function OFF ON

Table 1. On/Off Condition

252

APPENDIX

Pin Designations and Signal Descriptions

The mechanical specification of the RS-232-C requires a 25-pin connector (called a
DB-25). The following table specifies the pin assignments and signal descriptions as
they apply to the Radio Shack RS-232-C Interface.

Pin Number Abbreviation Description

1 PGND Protective Ground
2 TD Transmit Data
3 RD Receive Data
4 RTS Request-to-Send
5 CTS Clear-to-Send
6 DSR Data Set Ready
7 SGND Signal Ground
8 CD Carrier Detect

14 STD Secondary Transmit Data
18 SUN Secondary Unassigned
19 SRTS Secondary Request-to-Send
20 DTR Data Terminal Ready
22 RI Ring Indicator

Table 2. Pin Designations and Signal Description

Protective Ground: This must be bonded to the chassis or equipment frame. It
may also be connected to Signal Ground.

Transmit Data: Direction-to data communication equipment. Signals on this
circuit are generated by the data terminal equipment for transmission of data to
remote equipment. This signal should be held in the marking condition during
intervals between characters and at all times when no data is being transmitted.

Received Data: Direction-from data communication equipment. Signals on this
circuit are received from remote equipment which transmits data to the terminal.
This signal should be held in the marking condition during intervals between
characters and at all times when no data is being received .

Request-to-send: Direction-to data communication equipment. This signal is
required by the terminal equipment to control the direction of data transmission by
the data communication equipment. On one-way or duplex channels , the' 'on''
condition maintains the data communication equipment in the transmit mode. The
''off'' condition maintains the data communication equipment in the non-transmit
mode.

On a half duplex channel, the ''on'' condition maintains the data communication
equipment in the transmit mode and inhibits the receive mode . The' 'off'' condition
maintains the data communication equipment in the receive mode.

253

Clear-to-Send: Direction-from data communication equipment. This signal is
generated by the data communication equipment and indicates whether or not the
data set (modem) is ready to transmit data . The ''on'' condition is an indication to
the data terminal equipment that the data set can accept data on the Transmit Data
circuit. The ''off'' condition is an indication to the data terminal equipment that it
should not transfer data to the data set .

Data Set Ready: Direction-from data communication equipment. This signal
indicates the status of the local data set to the data terminal equipment. The ''on''
condition of this circuit indicates that the data communication equipment is not in
test , talk or dial mode and has completed any timing functions required to complete
call establishment (answer tone, etc.). The ''off'' condition will appear at all other
times and indicates that the data terminal should accept only Ring Indicator signals
and ignore all other signals (appearing on any other interchange circuit) .

Data Terminal Ready: Direction-to data communication equipment. This signal
is used to control the switching of the data communication equipment to the
communications channel. The ''on ' ' condition indicates to data communication
equipment that it should connect to the communications channel and that it should
maintain the connection as long as the' 'on'' condition is present. The' 'off''
condition causes the data communication equipment to be removed from the
communications channel following any in-process transmission of data.

Ring Indicator: Direction-from communication equipment. The ''on'' condition
of the circuit indicates that a ringing signal is being received on the communications
channel. In general, this means that the data set is being polled and that data
communication is desired by the polling device. The' 'off'' condition is held during
the off segment of the ringing cycle (between actual rings) and at all other times
when ringing is not being received .

Carrier Detect (Receive Line Signal Detector): Direction-from data
communication equipment. When' 'on' ' , this signal indicates that the data set is
receiving a carrier from a remote data set via the communications channel. The
''off'' condition indicates that no carrier is being received or that the signal quality
is unsuitable for data demodulation.

254

Index

Subject Page
Abbreviations 13, 49, 205
ABS 98, 179, 217
Accuracy 222
AC Power (see Connections) 7, 89
Addition (see Operators-Numeric)
AND . 119, 207
Arithmetic Functions 179-183, 217
Arrays

memory requirements 221
size (DIM) . 150-151
subroutine examples 173-178
types 175
variables . 194, 221

ASCII (see Codes) 20, 25
104, 164

216
ATN 179, 217
AUTO 125, 207

Base Conversions
decimal/binary/hex 241

BASIC Keywords 237-238
Baud Rate 2, 10, 29-31

42, 43, 45, 46 , 77, 86
(BREAK) Processing 14, 20, 80

Cass? 9-10, 16, 73, 85
Cassette

connection . 2, 5-7
operation . 29-34
interface 1, 91
1/0 61
jack pin 91

Capitals and Lowercase 19, 83
CDBL 180, 217
Characters

ASCII 104
codes 194, 227-233
declaration . 1 07
display 78
graphics . 25
input ·. ,. 12
Japanese Kana ' 27

INDEX

Subject Page

repeat 20
size.. 23
space compression 26
special. 26 , 35

165, 205
text 25

CHR$ 164,165,216
CINT 180, 217
(CLEAR). 19, 205
CLEAR n 126, 150

163,207,212
CLOAD (see Loading) 31 , 126, 207
CLOAD? 127, 207
CLS 35, 186, 215
Clock (Real Time). 53

setting . 1, 53
reading 54
display 54
table . 63
TIME$ 170

Codes
ASCII 20, 24
baud 46
character 227-233
control 20 , 228
error . 223-225
graphics 164, 230-232
HEX 104
internal keyword . 237
TAB 228

Command Mode . 13
(see Modes)

Concatenate (+). 116, 163, 206
160-161

Conditional Tests (IF, THEN, ELSE) 4, 5
Connections

AC power source 7, 89
cassette 7
perpherials . 5

Constants 98, 104
defined 99

CONT 127, 207
Control Codes (see Codes)

255

TRS-80 MODEL Ill

Subject Page

cos 180, 217
CSAVE (see Saving) 127, 208
CSNG 180, 217
Cursor 12, 16, 23, 83, 134
Customer Information. Inside Back Cover
DATA 142, 211
Data

conversion 98, 1 08, 111
handling : . 98
manipulating . 112-122
numeric . 102, 108
representing . 99
strings . 104
storing . 106

Debugging 127, 131
Declaration Characters

(see Characters)
Definition Statements

DEFDBL . 149, 212
DEFINT . 148, 212
DEFSNG 149, 212
DEFSTR 149, 212

DELETE 128, 208
DIM 150-151 , 173-178, 213
Disk . 1, 3, 9, 11
Division (see Operators-Numeric)
Double-Precision 102-103, 107

109-110, 206, 221

Edit Mode (see Modes)
EDIT 14, 128,

195-201 , 209
ELSE 161 , 215
END , 161 , 213
ENTER . 15-16, 19
Erase . 196, 205
ERL • 187, 218
ERR 187, 218
ERROR . 158, 214
Error Codes and Messages 223-225
Execute Mode (see Modes)
EXP 181 , 217
Exponentiation

(see Operators-
Numeric . 136, 211

Expressions
logical 98
numeric 97
relational . 98, 118
string 97
using 118
symbols 96

Extra Ignored . 141
Field Specifiers, PRINT USING 136-137

210
File Name 31 , 126-127
FIX 181 , 21 7

256

Subject Page

FOR. . . TO ... STEP/NEXT 155-157, 214
Forbidden Words (see Reserved Words)
FRE 165, 216
Functions 98, 128, 185-194

arithmetic. 217
special . 218
string 216

Glossary 247-249
GOSUB . 153, 213
GOTO 152, 213
Graphics , 185-186

codes . 230-232
statements. 215

Greater Than/Less Than 117

Header (see READY). 12
HEX Codes (see Codes)

IF . . . THEN ... ELSE 160-161
215

Immediate (see Modes)
line 12
special keys . 13, 73

INKEY$. 166, 216
INP 188, 218
INPUT 140-141 , 147, 210

Input/Output . 133-145
initialization 57, 68
interpretation . 12
routing 49, 74
RS-232-C. 44
statements 210

INPUT #-1 144-145, 147
211

Installation 5-7
INT 181 , 217
Integer Precision 98, 222

Keyboard
description . 1, 49
input 61
using 19-21 , 69-70

227-233
Keyword Codes (see Codes)

LEFT$. 167, 216
Left Bracket (see Exponentiation) 136, 206
LEN 167, 216
Less Than/Greater Than 117, 206
LET 151 , 213
Limits (Program and Memory) 220
Line

display 79
length 36
Immediate . 12
Input 12
program 13

Line Numbers . 14, 96

Subject Page
Line Printer

description . 3, 49
interface . 90
LUST 35
LPRINT 35, 210
output 72
Print Screen . 14

1, 5, 20, 39, 72, 90
using . 35-39

LIST 13, 31 , 35, 128, 208
LUST. 128, 208
Loading (CLOAD)

BASIC programs 31
errors 30
SYSTEM tapes . 33
table 32

LOG 181 , 217
Logical Operators (see Operators) .. . 119-121
Loop . 155-157, 166
LPRINT • ... 13, 35, 144, 217

Machine Language CALL 11 , 14, 130
191 , 192

MEM 188, 218
Memory

available 188, 189, 218
important addresses 37, 237
map 81
size (see USA, SYSTEM) 11, 16
overhead . 220

MID$ 168, 216
Model I/Model Ill Program Conversion 245
Modes of Operation

Command (or Immediate) 12
125,1 52, 205

Edit . 14, 195-201
209

Execute 14
System . 14, 130

Monitor Mode (see SYSTEM) 130
Multiplication (see Operators-Numeric)
Multiple Statements on One Line

(see Statements)

NEW 129, 208
NEXT 154-157, 214
NOT 119, 207

Object files (Machine Language) 14
130, 191-192

ON ERROR GOTO 158, 214
ON n GOSUB 155, 213
ON n GOTO 154, 213
Operators

arithmetic . 113, 206
hierarchy . 120
logical 119, 206
numeric 113, 120, 206
relational . 116, 206
string 116, 121 , 206

INDEX

Subject Page
Operating Modes (see Modes)
OR 119, 207
Order of Operation. 116, 207
OUT 189, 215

Page Controls . 37
Parentheses . 120
PEEK 189, 218
Peripherals 2, 5, 9, 1 O
POINT . 186, 218
POKE • ... 189, 190, 215
Port (see INP and OUT) 188, 9
POS 190, 218
Power Off . 1 O
Power On . 9-1 O, 87
PRINT 35, 133-34, 210
PRINT @ 134,210
Printer (see Line Printer)
Print Screen (see Line Printer)
PRINT TAB 135, 210
PRINT USING 136-40, 210
PRINT #-1 144, 210
Print Zones . 133-4
Program

documentation (REM) 160
elements . 96-1 02
examples . 96
limits 220
statements. 96-7, 14 7-61

212
Prompt 12, 125
Punctuation

colon . 13, 96
exclamation mark 106, 137

206, 212
period 13, 128, 136
question mark 140, 205
quotation mark 13, 104
semi-colon . 135

RAM 1, 2, 10, 11 , 26
59, 80

RANDOM 182, 214
READ . 142-3, 211
READY 12
REDO 141
Relational Operators (see Operators)
REM. 160, 214
Reserved Words (see Variables) 100, 219
RESET 10, 73, 186, 215
RESTORE 143, 211
RESUME 159, 214
RETURN . 153, 213
RIGHT$ 168, 216
AND 182, 217
ROM 2, 9 , 57
ROM Addresses . 82

257

Subject Page
ROM Subroutines All are in Op:

$CLOCKOFF . 54, 63
$CLOCKON . 54, 63
$CSHIN 64
$CSHWR 65
$CSIN 65
$CSOFF 66
$CSOUT 67
$DATE 68
$DELAY 68
$1NITIO 57, 68
$KBCHAR 59
$KBLINE 70
$KBWAIT 70
$KBBRK 71
$PACHAR 72
$PRSCN • 72
$READY 73
$RESET 73
$ROUTE 50, 74, 84
$RSINIT 48, 75, 83
$RSRCV. 76, 83
$RSTX 76, 83
$SETCAS 77
$TIME 54, 78
$VDCHAR 78
$VDCLS 79
$VDLINE 79

RS-232-C Interface . 41-48
75-76; 89, 251-254

RUN 13, 17, 31, 129-30
137, 141 , 152f' 208

Saving on Cassette (CSAVE) 30, 64
Screen Print . 14
Scrolling 24
Searching (see Edit)

BASIC 32
Sequence of Execution 152-161 , 213
SET 185-6, 215
SGN 182, 217
(SHIFT). 37, 19-21 , 205
Single-Precision . 102

105, 106, 109-10, 206, 218
Space Compression Codes (see Codes)
Special Keys . 19
Command Mode . 13
Execute Mode . 14
Immediate Mode , . 13

Specifications 89, 220-1
SOR 183, 218
Start-Up Dialog . 10, 16
Statement. 96, 7, 147, 161

assignment 147
conditional . 215
defined 97
definition . 107
functions 214
graphics 185-6, 215
special. 189, 215
program 147-61 , 212

STEP . 155-57

258

Subject Page
STOP 152, 213
String 163-71

arrays 175
comparisons . 177
data 104
functions 164, 171 , 216
input/output . 164, 206
operators . 166
storage space . 163

STRING$ 169, 216
STA$ 168-70, 216
Subroutine . 152-3
Subtraction (see Operators-Numeric)
Syntax Error . 223-4
SYSTEM (see Modes) 33, 130, 208

TAB 15, 20, 135
Tab Codes (see Codes) 231
TAN 183, 218
Technical Information 59-84
THEN 161
TIME$. 170, 216
TO 156-8
TROFF 131 , 208
TRON . 1 31 , 208
Troubleshooting and Maintenance 85-87
Type Declaration Tags 106-7, 206

USING . 136-140
USR 191-2, 218

VAL 170, 216
Variables

classifying . 98, 106
counter . 155-7
defined . 99
names . 99-1 00
reserved words . 100
simple and subscript 1 00

VAPRTR 193-4, 218
Video Display

brightness adjustment. 6, 9
clearing . 79
contrast adjustment. 6, 9
description 1, 35, 49,

227-233
output 62
using . 23-27

Warranty . Back Cover

z-ao Microprocessor 1, 2, 9, 11
14, 59, 61

89, 188, 191

Subject Page

Figures and Tables

AND OR NOT . 119
Base Conversions . 241
Cassette Jack Pin . 91
Character Codes

control: zero-31 228
text: 32-127 229-31
graphic: 128-191 232-3
space compression : 192-255 233-4

Connection of Peripherals/Controls 6
Derived Functions . 239
Error Codes . 223
Glossary 247
Keyword Codes . 237
Memory Map 81
Numeric Operators . 120
Numeric Relations. 117
Parallel Printer Interface 90
Printer Pin Location 91
Recommended Levels for Loading Tape ... 32
RS-232-C Signal Conversion 251
Standard RS-232-C Signal 89
String Relations . 11 7
Summary Tables

Arithmetic Functions 217
Characters and Abbreviations 205

Commands . 207
Field Specifiers 211
Input/Output Statements 210
Program Statements 212
RAM Addresses . 83
Reserved Words . 219
ROM Addresses . 82
Special Functions. 218
String Functions . 216

INDEX

259

Customer Information

SERVICE POLICY
Radio Shack's nationwide network of service facilities provides quick, convenient,
and reliable repair services for all of its computer products, in most instances.
Warranty service will be performed in accordance with Radio Shack's Limited
Warranty. Non-warranty service will be provided at reasonable parts and labor
costs.

Because of the sensitivity of computer equipment, and the problems which can
result from improper servicing, the following limitations also apply to the services
offered by Radio Shack:

1. If any of the warranty seals on any Radio Shack computer products are broken,
Radio Shack reserves the right to refuse to service the equipment or to void any
remaining warranty on the equipment.

2. If any Radio Shack computer equipment has been modified so that it is not
within manufacturer's specifications, including, but not limited to, the installation
of any non-Radio Shack parts, components, or replacement boards, then Radio
Shack reserves the right to refuse to service the equipment, void any remaining
warranty, remove and replace any non-Radio Shack part found in the equip­
ment, and perform whatever modifications are necessary to return the equip­
ment to original factory manufacturer's specifications.

3. The cost for the labor and parts required to return the Radio Shack computer
equipment to original manufacturer's specifications will be charged to the
customer in addition to the normal repair charge.

)

IMPORTANT NOTICE
ALL RADIO SHACK COMPUTER PROGRAMS ARE LICENSED ON AN
"AS IS" BASIS WITHOUT WARRANTY.

Radio Shack shall have no liability or responsibility to customer or any
other person or entity with respect to any liability, loss or damage caused
or alleged to be caused directly or indirectly by computer equipment or
programs sold by Radio Shack, including but not limited to any interru p­
tion of service, loss of business or anticipatory profits or consequential
damages result ing from the use or operation of such computer or
computer programs.
NOTE: Good data processing procedure dictates that the user test the

program, run and test sample sets of data, and run the system in
paral lel with the system previously in use for a period of time
adequate to insure that results of operation of the computer or
program are satisfactory.

RADIO SHACK SOFTWARE LICENSE
A. Radio Shack grants to CUSTOMER a non-exclusive, paid up license to
use on CUSTOMER'S computer the Radio Shack computer software
received . Ti t le to the media on wh ich the software is recorded (cassette
and/or disk) or stored (ROM) is transferred to the CUSTOMER, but not
title to the software.

B. In consideration for this license , CUSTOMER shall not reproduce
copies of Radio Shack software except to reproduce the number of copies
required for use on CUSTOMER'S computer (if the software allows a
backup copy to be made) , and shall include Radio Shack's copyright
notice on all copies of software reproduced in whole or in part.

C. CUSTOMER may resell Radio Shack's system and applications soft­
ware (modified or not, in whole or in part), provided CUSTOMER has
purchased one copy of the software for each one resold . The provisions
of this software License (paragraphs A, B, and C) shall also be applicable
to third parties purchasing such software from CUSTOMER.

LIMITED WARRANTY
For a period of 90 days from the date of delivery, Radio Shack warrants to the
original purchaser that the computer hardware unit shall be free from manufac­
turing defects. This warranty is only applicable to the original purchaser who
purchased the unit from Radio Shack company-owned retail outlets or duly
authorized Radio Shack franchisees and dealers. This warranty is voided if the
unit is sold or transferred by purchaser to a third party. This warranty shall be
void if this unit's case or cabinet is opened, if the unit has been subjected to
improper or abnormal use, or if the unit is altered or modified. If a defect occurs
during the warranty period, the unit must be returned to a Radio Shack store.
franchisee, or dealer for repair, along with the sales ticket or lease agreement.
Purchaser's sole and exclusive remedy in the event of defect is limited to the
correction of the defect by adjustment, repair, replacement. or complete
refund at Radio Shack's election and sole expense. Radio Shack shall have no
obligation to replace or repair expendable items.

Any statements made by Radio Shack and its employees. incluciing but not
limited to, statements regarding capacity, suitability for use. or performance of
the unit shall not be deemed a warranty or representation by Radio Shack for
any purpose, nor give rise to any liability or obligation of Radio Shack.

EXCEPT AS SPECIFICALLY PROVIDED IN THIS WARRANTY OR IN THE
RADIO SHACK COMPUTER SALES AGREEMENT. THERE ARE NO
OTHER WARRANTIES, EXPRESS OR IMPLIED. INCLUDING. BUT NOT
LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANT ABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL RADIO
SHACK BE LIABLE FOR LOSS OF PROFITS OR BENEFITS. INDIRECT.
SPECIAL. CONSEQUENTIAL OR OTHER SIMILAR DAMAGES ARISING
OUT OF ANY BREACH OF THIS WARRANTY OR OTHERWISE.

7-80

RADIO SHACK MA DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH. TEXAS 76102
CANADA: BARRIE. ONTARIO L4M 4W5

AUSTRALIA

280-316 VICTORIA ROAD
RYDALMERE, N.S.W. 2116

8749190-281-SL

TANDY CORPORATION

BELGIUM

PARC INDUSTRIEL DE NAN IN NE
5140 NANINNE

U. K.

BILSTON ROAD WEDNESBURY
WEST MIDLANDS WS10 7JN

PRINTED IN U.S.A.

	Front Cover
	Operation
	BASIC Language
	Appendices

